Notes from Video:

Table of Contents

1) Budget Vs. Actual 2
2) Budget Vs. Actual with Excel Worksheet Formulas: 2
3) Budget Vs. Actual with the Data Model and DAX Formulas. 3
i. The starting tables look like this 3
iii. The Final Data Model with Tables, Relationships, Measure and Hidden Columns looks like this 4
iv. The Final Data Model PivotTable looks like this 5
v. Picture of how Relations Flow 6
4) Budget Vs. Actual
i. Businesses plan operation by making estimates of what will happen in the unknow future.
ii. These estimates are called "budgeted" amounts or "forecasted' amounts
iii. The budgeted amounts are targets that the business thinks that they will achieve.
iv. Once the actual numbers are known, the differences between Actual and Budgeted amounts are calculated to determine variances. These variances can be used to make adjustments or changes when making plans in the next period. They can help the business to see where things were exactly as planned, batter than expected or less than expected.
5) Budget Vs. Actual with Excel Worksheet Formulas:

6) Budget Vs. Actual with the Data Model and DAX Formulas
i. The starting tables look like this :

4	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S
1																			
2																			
3			Budget Vs Actual -	- Grain Prob	blem: Budget $=\mathrm{M}$			Actual $=$ Day - D	Date by Prod	duct									
4																			
5			Grain $=$ Month, Pro	oduct, No D	Duplicates			Grain $=$ Produ	uct Line Tran	nsaction wi	ith Day Dat	Yes	plicates						
6																			
7			Base Budget by Mo	Month for Pr	roduct			Actual by Tran	nsactional	Product Sal									
8																			
9			EOMonth -	Product -	Budget \quad			Date -	Product -	Units ${ }^{\text {- }}$	Sales ${ }^{\text {- }}$		Product -	RetailPrice ${ }^{-1}$		Date -	MonthNumbei ${ }^{-}$	Month -	Year ${ }^{-1}$
10			1/31/19	Aspen	261,026			10/23/20	Aspen	48	920.16		Quad	43.95		1/1/19		1 Jan	2019
11			2/28/19	Aspen	266,139			12/13/20	Aspen	24	498.42		Carlota	36.95		1/2/19		1 Jan	2019
12			3/31/19	Aspen	242,085			12/21/19	Quad	3	131.85		Aspen	31.95		1/3/19		1 Jan	2019
13			4/30/19	Aspen	255,811			12/2/19	Quad	84	2215.08					1/4/19		1 Jan	2019
14			5/31/19	Aspen	336,485			11/9/19	Aspen	12	316.31					1/5/19		1 Jan	2019
15			6/30/19	Aspen	314,706			12/9/20	Aspen	36	747.63					1/6/19		1 Jan	2019
16			7/31/19	Aspen	301,014			12/11/20	Carlota	12	365.81					1/7/19		1 Jan	2019
17			8/31/19	Aspen	318,504			11/25/20	Aspen	36	747.63					1/8/19		1 Jan	2019
18			9/30/19	Aspen	275,060			12/25/20	Aspen	84	1610.28					1/9/19		1 Jan	2019
19			10/31/19	Aspen	1,375,481			12/11/19	Aspen	24	498.42					1/10/19		1 Jan	2019
20			11/30/19	Aspen	2.830.525			12/23/19	Aspen	12	316.31					1/11/19		Jan	2019

ii. The Measures we created look like this:

Budgeted Sales:=SUM(fBudget[Budget])

Actual Sales:=SUM(fTransactions[Sales])
Variance:=[Actual Sales]-[Budgeted Sales]
\% Variance:=DIVIDE([Variance],[Budgeted Sales])
iii. The Final Data Model with Tables, Relationships, Measure and Hidden Columns looks like this :

iv. The Final Data Model PivotTable looks like this :

Not required for class, but related:

If you do not want a relationship between budget table and other tables, you can simulate the relationship with this formula:

Budgeted Product Month Sales:

=CALCULATE (
SUM(fBudget[Budget]),
INTERSECT(VALUES(fBudget[EOMonth]),VALUES(dDate[EOMonth])),
INTERSECT(VALUES(fBudget[Product]),VALUES(dProduct[Product])))

- The INTERSECT functions runs and AND Logical Test, but the left and right table are NOT commutative. INTERSECT (A,B) can be different than INTERSECT(B,A).
- If the table without the relationship is the target table and the other table has a column in the filter context you want to use to filter the target table, you use this patter:

```
INTERSECT(VALUES(TargetColumn),VALUES(FilterContextToRead))
```

If you are in Power BI Desktop, then you can use TREATAS rather than the INTERSECT function. TREATAS is faster calculating (important for big data) and it requires that you invert the left and right tables, the FilterContextToRead and TargetColumn tables, as seen here:

Budgeted Product by Month Sales:
= CALCULATE(
SUM(fBudget[Budget]),
TREATAS(VALUES(dProduct[Product]),fBudget[Product]),
TREATAS(VALUES(dDate[End of Month]),fBudget[EOMonth]))

