
Page 1 of 42

Microsoft Power Tools for Data Analysis #19

CALCULATE DAX Function, Filter Context, ALLSELECTED & KEEPFILTERS in Excel and Power BI

Notes from Video:

Table of Contents
1) DAX Expression can be a Measure, a Calculated Column or a DAX Query : ... 2

2) Filter Context, First Look ... 2

3) Internal Filter Context, External Filter Context and Final Filter Context .. 3

4) A simple Example of Internal Filter Context and External Filter Context ... 3

5) A simple example of just Internal Filter Context .. 3

6) How can we change the Filter Context? ... 3

7) Details about the CALCULATE and CALCULATETABLE DAX Functions .. 4

8) What is a Boolean Logical Test Filter? .. 7

9) Boolean Filter is always converted to a FILTER & ALL DAX Function construction... 7

10) VALUES rather than ALL in first argument of FILTER : .. 8

11) Boolean Condition Restrictions ... 8

11) AND Logical Test and OR Logical Test Boolean Formulas we saw in the Video .. 10

12) ALL DAX Function & Grand Totals ... 12

13) Hidden Context Transition for Measures in an Excel PivotTable or Power BI Visual ... 13

14) Step-By-Step Example of the CALCULATE Overwrite Operator .. 14

15) ALLSELECTED to create Grand Totals that respect the filtering in the PivotTable ... 18

16) Context Transition Full Story ... 19

17) ALLSELECTED DAX Function .. 20

18) KEEPFILTERS DAX Function ... 22

15) Expanded Table Concept & Relationships .. 33

17) Table Filters & Expanded Table as filters in the Filter argument of CALCULATE .. 37

17) DAX Formula Evaluation Context Summary.. 39

25) Examples of Time Intelligence Functions as filters in CALCULATE .. 40

26) ISFILTERED, HASONEVALUE, BLANK, COUNTROWS DAX Functions ... 42

Page 2 of 42

1) DAX Expression can be a Measure, a Calculated Column or a DAX Query :

2) Filter Context, First Look

i. How does a DAX Expression calculate or evaluate to get the correct answer?

ii. Simple Answer: Filter Context.

iii. Filter Context =

1. General Definition of Filter Context = Filter the Data Model Tables to get the specific values we
need so a DAX Expression can calculate the correct conditional calculation formula answer.

2. Less General Definition of Filter Context = Conditions / Criteria / Filters (Synonyms) that filter the
tables in the Data Model, so the Expression can use the filtered, smaller tables and columns as
the source data to make the calculation.

iv. Simple Example of how DAX Measure evaluates using Filter Context (file used for example::

1. File name for example: “019-MSPTDA-CALCULATE-FilterContext-01-Start.xlsx”

2. Tables:

3. Data Model:

4. Measure in Excel PivotTable (or Power BI Visual):

5. “Quad” Condition in Row Area of PivotTable filters the dProduct Table, and then the filter flows

across the Relationship to filter the Fact Table down to just the rows it needs to calculate the
Total Sales:

6. The Final Filter Context under which the DAX Measure calculates is the filtered Sales column

that contains the numbers: 15, 10, 10.

Page 3 of 42

3) Internal Filter Context, External Filter Context and Final Filter Context. When DAX Measures are calculated in
an Excel PivotTable or Power BI Visual, there are potentially two inputs into Final Filter Context that filters tables
in the Data Model:

i. Internal Filter Context: Conditions/Criteria/Filters from inside the DAX Measure.
ii. External Filter Context: Row and Column and Filter and Slicer Conditions/Criteria/Filters from the Excel

PivotTable or the Power BI Visual.

4) A simple Example of Internal Filter Context and External Filter Context working together to construct the Final
Filter Context under which the DAX Measure can make its calculation is seen below.

i. Using the same Data Model as in the previous example, the PivotTable with the [Total Sales] and [Quad
Total Sales] Measures.

ii. For the [Quad Total Sales], although we have a PivotTable Row Area condition or criteria trying to filter
the underlying Fact Table for each row in the PivotTable, the internal filter of “Quad” overwrites the
external filter and so each cell in the PivotTable calculate the Total Sales for the Quad Product.

iii. We will learn much more about the process of merging the internal filters and external filters, but in this
first simple example we can see that filters for the tables in the Data Model can come from the external
report or from internally, inside the DAX Measure.

5) A simple example of just Internal Filter Context in a DAX Table Function in Query can be seen below:

i. Using DAX Studio (or Power BI Desktop like in the video) and connecting to the same Data Model as in
the previous example, as seen in the below picture for a Query we can use the Internal Filter in the DAX
Table Function CALCULATETABLE to filter the Fact Table to show just records for the product “Quad”. In
this example the CALCULATETABLE function starts with “No External Filter Context” and then uses an
Internal Filter for “Quad” on the dProduct[Product] column and then propagates it to the fTransactions
table to show just the records for the “Quad” product.

6) How can we change the Filter Context?

i. The CALCULATE and CALCULATETABLE functions are the DAX functions that we use to change the Filter
Context (there are a few others also, like TOTALYTD).

Internal Filter Context is:
dProduct[Product]="Quad"

External Filter
Context is:

Product Name
on each row.

Page 4 of 42

7) Details about the CALCULATE and CALCULATETABLE DAX Functions:

i. The CALCULATE and CALCULATETABLE DAX Functions can change the Filter Context.

ii. Some of the ways that these functions can change the Filter Context:

1. For a Measure in a report or visualization, it can change the Filter Context by merging the
External & Internal Filter Contexts.

2. For a DAX Table formula or a DAX Query, it can change no Filter Context into a Filter Context by
using an internal filter from inside the CALCULATE function.

3. In a Calculated Column or Iterator Function, CALCULATE can change no Filter Context into a
Filter Context by converting all available Row Contexts into an Equivalent Filter Context.

iii. Arguments for CALCULATE:
CALCULATE(Scalar Expressions, Filter1, Filter2…)

iv. Arguments for CALCULATETABLE:
CALCULATETABLE(Table Expressions, Filter1, Filter2…)

v. CALCULATE and CALCULATETABLE both work the same and so when I use the function name
“CALCULATE” throughout the rest of this pdf handout, I will be referring to both the CALCULATE and
CALCULATETABLE functions.

vi. Internal Filters in CALCULATE:

1. In the CALCULATE filter arguments, we can use any column from our Star Schema Data Model.
You can think of the CALCULATE function as being able to see the entire Data Model and filter
columns which can then flow across relationships.

2. The Filter argument will consist of valid lists of values which will serve as the conditions or
criteria for filtering (either from a Table Function or Boolean Logical Test Filter).

3. The Filter1, Filter2… arguments in CALCULATE work together in an AND Logical Test.

4. Two types of filters:

i. Boolean Logical Test Filter, like dProduct[Product]=”Quad” (this is a valid list of a single
product, “Quad”).

ii. A Table expression that delivers a valid list of values. Like these DAX functions: FILTER,
SAMEPERIODLASTYEAR & DATESADD. Also, Table Filters (as we will see later).

5. In a single Filter argument, we can run logical tests like:

i. AND Logical Test (&& or AND function)

1) Examples:

i. AND(fTransactions[Sales]>=10, fTransactions[Sales]<20)

ii. fTransactions[Sales]>=10 && fTransactions[Sales]<20

ii. OR Logical Test (|| or OR function)

1) Examples:

i. OR(dProduct[Product]=”Quad”, dProduct[Product]=”Carlota”)

ii. dProduct[Product]=”Quad” || dProduct[Product]=”Carlota”

iii. NOT Logical Test(! Or NOT function)

1) Examples:

i. NOT(dProduct[Product]=”Quad”)

ii. ! dProduct[Product]=”Quad”

6. A Boolean Logical Test Filter can contain only a single column such as:

i. Examples:

1) dProduct[Product]=”Quad”

2) fTransactions[Sales]>=10 && fTransactions[Sales]<20

3) dProduct[Product]=”Quad” || dProduct[Product]=”Carlota”

This section has all details about CALCULATE & although you might want to read through it now, it
will make more sense after you watch the whole video & read the rest of these pdf notes :)

Page 5 of 42

7. A Boolean expression cannot work on two different columns

i. Not Allowed because we are using a Boolean Filter:

1) dProduct[Price]>=dProduct[Cost]*2

ii. Allowed because we are using a Table Function:

1) FILTER(ALL(dProduct[Price],dProduct[Cost]),dProduct[Price]>=dProduct[Cost]*2))

iii. For a Boolean we can not use two different columns because internally the engine does
not know which of the two columns it should iterate over, and/or which of any possible
external columns it should replace in the Overwrite Operation.

iv. More explanation a few pages ahead in the “Boolean Filter Restrictions section”.

vii. How Internal Filter Context and External Filter Context are Merged to get the Final Filter Context:

1. CALCULATE takes the internal filters from the Filter arguments in CALCULATE and the external
filters from the Excel PivotTable or Power BI Visual, and if the same column is used in the
External Filter Context and Internal Filter Context, the internal column/s replaces the external
column/s. Specifically, the external column/s are removed, the internal column/s remain, then
an AND Logical Test is used to merge the External Filter Context and Internal Filter Context, to
get the Final Filter Context that the Measure calculates under. Multiple examples are presented
later in the pdf notes.

2. Operators used in CALCULATE:
i. AND Logical Test (Intersect):

1) AND Logical Test works between the filters in the Internal Filter Context
2) AND Logical Test works between the filters in the External Filter Context
3) AND Logical Test will work when it merges the External Filter Context and

Internal Filter Context to get the Final Filter Context.
ii. Overwrite:

1) If a column used in the filtering exists in both the External Filter Context and
Internal Filter Context, the external column is removed from the External Filter
Context leaving only the internal column in the Internal Filter Context.

i. For example, if the external filter was dProduct[Product]=”Carlota” and
the internal filter was dProduct[Product]=”Quad”, the external filter of
dProduct[Product]=”Carlota” is removed leaving an empty filter and the
internal filter of dProduct[Product]=”Quad” remains.

2) The External Filter Context and Internal Filter Context are Merged using an AND
Logical Test to create the Final Filter Context under which the Measure makes
its calculation.

iii. ALL Remove Operator:
1) The “ALL Remove” Operator is an operator that is created when we use the ALL

Function inside a Filter argument of the CALCULATE function. If we use the ALL

function on a column, columns or on a table, all filters on the column, columns

or table will be removed and an empty filter will be left in place of the column,

columns or table. For example, the formula CALCULATE([Total

Sales],ALL(fTransactions)) would remove all filters from all columns in the

fTransaction table, leaving all rows for the [Total Sales] calculation and yielding

the Grand Total for all transactions.

viii. The CALCULATE Function always determines the Final Filter Context BEFORE it sends the filter to the
tables in the Data Model and then calculates the final answer for the first argument. This means that the
first argument in CALCULATE is always evaluated last, after the filters are used to determine the Final
Filter Context.

Page 6 of 42

ix. CALCULATE performs Context Transition, which means:

1. All available Row Contexts will be converted to an Equivalent Filter Context (“all available”
means that if there are multiple Row Contexts, one after the other, all of those Row Contexts
will be converted to an Equivalent Filter Context in an AND Logical Test.

i. As an example, if you have an aggregate formula like, SUM(fTransactions), in a
Calculated Column and you want the table inside the SUM function to be filtered based
on a condition from each row in the table, you can wrap the CALCULATE function
around the SUM to perform Context Transition thereby converting the Row Context into
Filter Context and filtering the table inside the SUM function.

2. Note: Columns used in a filter inside CALCULATE will override any columns coming from Context
Transition. Because the columns are inside CALCULATE, and Row Context filters are coming from
outside, or from an External Filter, the Overwrite processes will replace the columns from the
External Filter Context created by Context Transition.

i. Examples:

1) When you use a formula like CALCULATE(SUM(fTransactions[Sales])) in a
Calculated Column in a Product table that has a One-To-Many Relationship
with the Fact table you will get the sum of all sales for each product. In the
below picture this is the formula we used in the Product Sale Column.

2) When you use a formula like
CALCULATE(SUM(fTransactions[Sales]),ALL(fTransactions)) in a Calculated
Column in a Product table that has a One-To-Many Relationship with the
Fact table you will get the sum of all sales from all records in the Fact table.
This is because the ALL function removes all filters from the fTransactions
table and this filter will overwrite the Filter Context for each product in each
row of the Calculated Column created by Context Transition.

ii. Picture from (not seen in video but is in the downloadable finished file named “019-

MSPTDA-CALCULATE-FilterContext-01-Finished.xlsx”:

x. All Measures have a hidden CALCULATE Function that performs Context Transition.

xi. In a Star Schema Data Model, when you use the ALL Function on a Fact Table and place it in the Filter
Argument of the CALCULATE, you will remove all filters placed on all tables in the Data Model.

Page 7 of 42

8) What is a Boolean Logical Test Filter?
i. “Boolean Logical Test Filter”, or just “Boolean Filter” means that you use a single column, a comparative

operator and a condition, like: dProduct[Product]=”Quad”.
9) Boolean Filter is always converted to a FILTER & ALL DAX Function construction :

i. When you type a Boolean Filter in the CALCULATE function, internally in the DAX Engine, the Boolean
Filter is converts to a FILTER & ALL construction, as seen below.

ii. How the FILTER-ALL Combination works in the above picture:
1. In the 1st argument of the FILTER function, the ALL Function returns a unique list of the all the

Products as a table of values.
i. The ALL Function does not see the External Filter Context from the Product column in the

Row Area of the PivotTable and therefore will return a complete unique list in each cell of
the PivotTable (this is why the formula returns the same “Quad” Total in each cell).

ii. When the ALL function is used in the first argument of FILTER, it delivers a table of values
(this is an important distinction because later we will see that when you use the ALL
function in a Filter argument of CALCULATE it works as a remove operator).

2. The Condition “Quad” is compared to each row in the ALL Table, iterating over each row.
3. Only the “Quad” Row gets a TRUE.
4. The FILTER Table returns a single row table that contains the condition “Quad”.

iii. How the CALCULATE Functions uses the “Quad” Condition to filter rows in the Fact Table in the above
picture:

1. The external filter is the particular product in the Row Area of the PivotTable from the
dProduct[Product] column.

2. The Internal Filter Context is the “Quad” product from the dProduct[Product] column.
3. In the Overwrite process:

i. The external filter on the dProduct[Product] column is removed resulting in an empty
filter

ii. The internal filter on the dProduct[Product] column remains as
dProduct[Product]=”Quad”.

iii. An AND Test in run on the External Filter Context and Internal Filter Context to create
the Final Filter Context is: dProduct[Product]=”Quad”.

4. The Quad Filter flows across the relationship from the Dimension Table, dProduct, to the Fact
Table, fTransactions, and filters the Fact table down to just the rows with the “Quad” Product.

5. The [Total Sales] Measure calculates or evaluates using the filtered fTransactions Sales Column.

1) When you type a
Boolean Filter like this

2) DAX Engine converts
this

Page 8 of 42

10) VALUES rather than ALL in first argument of FILTER :
i. As seen in video, when we use VALUES rather than ALL in first argument of FILTER, we get an amount

only in the row that contains the condition because the VALUES function can see the External Fiulter
Context, but the ALL Function does not. Here is a picture from the video:

11) Boolean Condition Restrictions :
i. Only a Single Column can be used in a Boolean Filter in the Filter argument of CALCULATE.

1. The syntax of directly comparing two columns in a Boolean Statement is not allowed by the DAX
Engine. This is the error message that you will get if you try:

1. Reasons we can only use a single column in a Boolean Logical Test Filter:

i. All Boolean Logical Test Filter are converted to a single column FILTER and ALL
construction and the DAX engine must detect a single column that the FILTER function
can iterate.

ii. If you try to use two different columns in a single CALCULATE Filter argument and the
same column/s that are used in the Boolean Filter are also in the External Filter Context,
the engine does not know which ones to replace: one, the other, or both?

2. If you have two or more columns used in your Boolean Statement, instead of authoring the filter
as a Boolean Statement, you must use Table functions (like FILTER) to construct the filter.

3. Example as seen in video is below:

Page 9 of 42

ii. The Condition for a Boolean Filter can be a Literal or the VALUES function :
1. The VALUES can be used to get a variable from a disconnected table (no relationship with any

other table) and convert it to a scalar value so it can be used as a condition in a Boolean Filter.
2. Example as seen in video:

iii. Results from aggregate functions like MIN and MAX functions are not allowed as conditions for Boolean
Filters. However, functions like MIN and MAX can be used in the FILTER Function.

1. In the video we create a Frequency Distribution to count how many sales there were between
an upper and lower limit. We use a Disconnected Category Table names “disSalesLimits”. Here is
a picture of the formulas we created in the video:

Page 10 of 42

11) AND Logical Test and OR Logical Test Boolean Formulas we saw in the Video :

i. AND Logical Tests:

[Sales Between 10 and 20 One Argument] :=
CALCULATE([Total Sales],fTransactions[Sales]>=10 && fTransactions[Sales]<25)

[Sales Between 10 and 20 Two Arguments] :=
CALCULATE([Total Sales],fTransactions[Sales]>=10,fTransactions[Sales]<25)

[Sales Between 10 and 20 AND] :=
CALCULATE([Total Sales],AND(fTransactions[Sales]>=10, fTransactions[Sales]<25))

[Carlota Sales >15] :=
CALCULATE([Total Sales],dProduct[Product]="Carlota", fTransactions[Sales]>15)

ii. OR Logical Tests:

[Freestyle Boom Sales] :=
CALCULATE([Total Sales],dProduct[Product]="Quad" || dProduct[Product]="Carlota")

[Freestyle Boom Sales OR] :=
CALCULATE([Total Sales],OR(dProduct[Product]="Quad", dProduct[Product]="Carlota"))

Page 11 of 42

Page 12 of 42

12) ALL DAX Function & Grand Totals. When you use the ALL DAX function in the Filter argument of CALCULATE, ALL
DAX function will remove filters.

i. Review of what you are allowed to use in the ALL DAX Table function:
1. ALL(column)
2. ALL(column1,column2…)
3. ALL(table)

ii. When you use the ALL DAX function in the Filter argument of CALCULATE, the ALL DAX function will
remove filters from the column, columns or tables that sit in the ALL function. You can think of the ALL
function in the Filter argument of CALCULATE as the “Remove Operator”.

iii. Using the ALL DAX Function on the Fact Table can be useful when you need to calculate the Grand Total
Amount for every cell in the Excel PivotTable or Power BI Visual. This Grand Total can then be used as
the denominator to calculate a “% of Grand Total” formula.

iv. Example of ALL as the “ALL Remove Operator”:

v. The steps for how the ALL DAX function works as a remove operator in CALCULATE for the second row in
the PivotTable shown above (the row with “Quad” in the Row Area of the PivotTable) are listed here:

1. First, consider how the [Total Sales] Measure is calculated for the “Quad” row. When the [Total
Sales] Measure sits in the “Quad” row, the Final Filter Context on the Fact Table looks like this:

2. But when the [Grand Total] Measure sits in the “Quad” row of the PivotTable, the “Quad” Condition
tries to filter the Fact Table as seen in the previous picture, but the ALL(fTransaction) formula element
“REMOVES” all filters from the Fact Table so that when the [Grand Total Measure] is calculated, the
Final Filter Context on the Fact Table looks like this (picture on next page):

Filter
Context for

[Total Sales]
Measure in
the “Quad”

Row.

Page 13 of 42

3. In the Formula, The ALL Function Removes all the filters on the Fact Table and the CALCULATE allows
that change in filtering to take effect on the Measure. The ALL function “Removes” filters and then the
CALCULATE Function changes the Filter Context so that all rows in the Fact Table Sales Column can be
used to calculate the Grand Total sales amount. In the below picture, we can see that we can use the
Grand Total Measure as the denominator to calculate the [% of Grand Total] Measure:

13) Hidden Context Transition for Measures in an Excel PivotTable or Power BI Visual:.
i. When a Measure is dropped into a PivotTable or Power BI Visual, in order for the conditions from the

Row, Column and Filter Areas to flow into the Measure, the “Row Context” Condition must be converted
to “Filter Context” so that the tables can be filtered and the Measure can calculate the final answer. You
can think of the rows in a PivotTable or Power BI Visual as rows that the Measure needs to iterate in
order to pick out the correct conditions for the Measure to calculate the final answer. The mechanism
for accomplishing this is “Context Transition”.

ii. Any Measure in a PivotTable or Power BI Visual performs Context Transition (Row Context into
Equivalent Filter Context) so that the conditions from the Row, Column, Filter, and Slicer from each cell
(Row Context) can flow into the Measure, then filter the Data Model tables, and the Measure can
calculate the final answer.

iii. When you drop a Measure into a PivotTable or Power BI Visuals that has a Grand Total Row, two
different processes occur:

1. The Row or Column Area of Pivot / Power BI Report calculates as an Iterator with Context
Transition.

2. The Grand Total Cell Calculates without a hidden Context Transition and Iteration.
iv. The importance of knowing about the Context Transition in an Excel PivotTable or Power BI Visual will

become obvious when we study the ALLSELECTED DAX Function.

[% of Grand
Total] Measure
uses the grand

total sales
amount of $80

in the
denominator.

Page 14 of 42

14) Step-By-Step Example of the CALCULATE Overwrite Operator:

1] File name for example: “019-MSPTDA-CALCULATE-FilterContext-02-Finished.xlsx”

2] Tables shown here:

3] New Data Model shown here:

4] Measures in Excel PivotTable Example with Product on the Row Area of the PivotTable and a Slicer with the Region
“West” selected:

MB Row in the
PivotTable

Page 15 of 42

5] For the MB Row in the PivotTable in the above picture, here is how the Final Filter Context is determined for the
[Total Quad Revenue] Measure:

1) The external and internal filters for the MB Row in the PivotTable are:

1. Internal filter = dBoomProducts[Product]="Quad"
2. External filter = dBoomProducts[Product]="MB" AND dSalesRep[Region]="West"

2) OVERWRITE Process to get Final Filter Context:

Because the dBoomProducts[Product] column is used in both the internal and external filters, internal
wins! This happens:

dBoomProducts[Product]="Quad" OVERWRITES dBoomProducts[Product]="MB”.

1. First, the filter dBoomProducts[Product]="MB" is removed from the External Filter Context.
2. This means that after the filter is removed from the Product Column in the external filter, the new listing

of external and internal filters for the MB Row in the PivotTable would look like this:

1. Internal filter = dProduct[Product]="Quad"
2. External filter = dSalesRep[Region]="West"

3. Then an AND Logical Test is run on the internal and external filters:

1. Internal filter = dProduct[Product]="Quad"

AND
2. External filter = dSalesRep[Region]="West"

4. Which Results in Final Filter Context for Dimension Tables and Fact Table that Measure uses to calculate

the final answer:

Final Filter Context = dProduct[Product]="Quad" AND dSalesRep[Region]="West"

6] For the MB Product Row in the above picture, here is how the Final Filter Context is determined for the [Grand
Overall Total] Measure:

1) The external and internal filters for the MB Row in the PivotTable are:

i. Internal Filter = ALL(fTransactions) means all filters, everywhere, are removed.
ii. External Filter = dProduct[Product]="MB" AND dSalesRep[Region]="West"

2) OVERWRITE Process to get Final Filter Context:

i. Because the only internal filter is the ALL function wrapped around the Fact Table, all filters in the Data

Model are removed.

Final Filter Context = ALL(fTransactions) means all filters, everywhere, are removed.

Page 16 of 42

[7] In the video, we saw the same example as on the previous two pages in Power BI Desktop. Here is a
picture of the report we used and the Description of the Overwrite operation:

Page 17 of 42

[8] The Final Filter Context of:

[9] Will filter the underlying Fact table like this:

[10] So the Measure can calculate the final answer of $4,580,833, as seen here:

Page 18 of 42

15) ALLSELECTED to create Grand Totals that respect the filtering in the PivotTable :
i. In the below picture, the [% of Grand Overall Total] Measure, calculates the correct percentages for

each product by dividing revenue for the product by the Grand Total amount, and the Grand Total Row
in the PivotTable shows the correct 100%:

ii. This formula uses the Total Product Revenue in the Numerator and the Grand Overall Total in the
Denominator.

iii. But as seen in the picture below, if we filter the PivotTable on the Row Area or with the Slicer, notice:
1. The [Grand Overall Total] Measure does not change. The [Grand Overall Total] Measure does

not see the filters for the Region or the Product.
2. The [% of Grand Overall Total] Measure uses the filtered product revenue in the numerator and

the NON-Filtered Grand Overall Total in the denominator. This might be the calculation that you
want. But if you wanted both the numerator and denominator to reflect the filters being applied
by the report user, then we need to switch from using the ALL function as a filter inside the
CALCULATE function to the ALLSELECTED function.

$10,329,903.03 is the
Filtered Total

This Measure does NOT
“see” the filters

MB product
is filtered

out
These are filters that the

end user created

Page 19 of 42

iv. By switching from ALL(fTransactions) to ALLSELECTED() as the only filter in the Filter argument of the
CALCULATE function, then the final answer for the Measure [Grand Overall Total AS] will be the total
revenue for the filters shown in the PivotTable. And the final answers for the Measure [% Grand Overall
Total AS] will have the correctly filtered amounts in the numerator and denominator.

v. To understand what the ALLSELECTED() function is doing to get the correct filtered grand total for the
[Grand Overall Total AS] Measure, look at the “Quad” Product row in the PivotTable in the picture
below. For the Measure in this row, the ALLSELECTED removes the “Quad” Product Row Context and
jumps back to the previous Grand Total Filter that contains the products “Carlota”, “Quad”, and
Sunshine” in the “West” Region. Said a different way: ALLSELECTED will remove the “Row Context”
generated by the automatic Context Transition for each cell in the PivotTable and jump back to expose
the filtered Grand Total Filter Context, which consists of the filters “Carlota”, “Quad”, and Sunshine”
products and the “West” Region.

vi. The full definition of the ALLSELECTED DAX function is:

Removes the last filter generated from Context Transition and jumps back to the Previous Filter

vii. To fully understand ALLSELECTED and Context Transition, we need to re-visit the topic of Context
Transition on the next page.

16) Context Transition Full Story :
i. Context Transition occurs when you use the CALCULATE Function or the hidden CALCULATE Function

wrapped around every Measure in these places:
1. Calculated Column,
2. Iterator Function
3. An Excel PivotTable or Power BI Visual.

ii. Context Transition will convert all available Row Contexts into an Equivalent Filter Context. If there are
stacked up Row Contexts, one after the other, they will be merged in an AND Logical Test. Further, if
there are columns from the Context Transition (External Filter Context) that are the same as columns
inside the CALCULATE (Internal Filter Context), then the Overwrite process will remove the external
columns and the internal columns will remain.

iii. Context Transition has a hidden process that only comes into play when we use the ALLSELECTED DAX
Function.

“Quad” Product row
in the PivotTable ALLSELECTED helped to get

the Filtered Grand Total.

Page 20 of 42

iv. The hidden process in Context Transition is this: when the CALCULTAE function and the DAX Engine
initiate the transition from Row Context to Filter Context, two layers of filters are created where one
layer is the current row and the other is the full iterated table behind it.

1. Example 1. In the below table of Product names, the “Current Row” would be “Quad” and the
“Full Iterated Table Behind It” would be the full list of product names.

2. Example 2: In the Below PivotTable, the “Current Row” would be “Quad” and the “Full Iterated
Table Behind It”, or more specifically, the Filter Context for the Grand Total Cell would be
Products = Carlota, Quad, Sunshine and the Region = West.

v. These two layers or filters or stacks of filters can be thought of with different synonyms:
1. Current Row = Second Filter = Last Filter= Inner Filter
2. Full Iterated Table = First Filter = Previous Filter = Outer Filter

vi. The Two Filters Get applied one after the other by the engine:
1. First = Full Iterated Table
2. Second = Current Row

vii. Most of the time we don’t have to think of the two layers or filters. Most of the time we just think of the
“Current Row” in a Calculated Column, or in an Iterator Function. But, when we use the ALLSELECTED
DAX Function, we have to think about these two filters because ALLSELECTED will only remove the last
filter created by Context Transition. If we have two iterations, one after the other, then things might
seem difficult if we are not paying attention. Our next section will illustrate this.

17) ALLSELECTED DAX Function :
i. What ALLSELECTED does:

Removes the last filter generated from Context Transition and jumps back to the Previous Filter

ii. Most of the Time, ALLSELECTED() is used to get a Denominator Number for % of Grand Totals and allow
Filter or Slicer selections to influence the Grand Total.

iii. A formula like this: CALCULATE([Total Sales],ALLSELECTED())

ALLSELECTED would remove the last filter (Row Filter) and jump back to the Row/Column/Filter/Slicer
filtering for the Grand Total cell in the External Filter Context in the Excel PivotTable or the Power BI
Visual. This is helpful if you would like your Measure to calculate the Grand Overall Total based on any
applied Filters by the client (end report consumer). As seen in the picture on the next page,
ALLSELECETED() instructed CALCULATE to remove the “Quad” Row Context and jump back to the Total
Revenue Grand Total Filter Context which are the filters “Carlota”, “Quad”, and Sunshine” from the
dBoomProduct table and the “West” Region from the dSalesRep table as seen here.:

Page 21 of 42

iv. But a formula like this AVERAGEX(dDate,CALCULATE([Total Sales],ALLSELECTED())

ALLSELECTED would remove the last filter (Row Filter in row in dDate Table) and jump back to the dDate
Table. Because ALLSELECETED removes only the last filter created during Context Transition, it will NOT
be able to jump back to expose the filtering from the External Filter Context in the Excel PivotTable or
the Power BI Visual Grand Total Cell.

v. Example of the incorrect answers if we use ALLSELECTED in an iterator function like AVERAGEX:

[Total Revenue] := SUMX(fSales,RELATED(dBoomProducts[RetailPrice])*fSales[Units])

[Grand Overall Total] := CALCULATE([Total Revenue],ALL(fSales))

[% of Grand Overall Total] := DIVIDE([Total Revenue],[Grand Overall Total])

[Grand Overall Total AS] := CALCULATE([Total Revenue],ALLSELECTED())

[% of Grand Overall Total AS] := DIVIDE([Total Revenue],[Grand Overall Total AS])

Product Total Revenue

Grand Overall

Total

% of Grand

Overall Total

Grand Overall

Total AS

% of Grand

Overall Total AS

Carlota $1,983,667.40 $24,156,719.90 8.212 % $10,329,903.30 19.203 %

Quad $4,580,833.00 $24,156,719.90 18.963 % $10,329,903.30 44.345 %

Sunshine $3,765,402.90 $24,156,719.90 15.587 % $10,329,903.30 36.451 %

Grand Total $10,329,903.30 $24,156,719.90 42.762 % $10,329,903.30 100.000 %

Region

East

West

[Total Revenue] := SUMX(fSales,RELATED(dBoomProducts[RetailPrice])*fSales[Units])

[Average Daily Rev AS Mistake] := AVERAGEX(dDate,CALCULATE([Total Revenue],ALLSELECTED()))

[Average Daily Rev] := AVERAGEX(dDate,[Total Revenue])

Year Month Total Revenue Average Daily Rev AS Mistake Average Daily Rev

2017 Jan $476,827.05 $476,827.05 $17,660.26

Feb $506,974.35 $506,974.35 $19,499.01

Mar $532,739.05 $532,739.05 $19,731.08

Apr $494,352.00 $494,352.00 $17,655.43

May $437,015.00 $437,015.00 $14,567.17

Jun $554,697.50 $554,697.50 $19,810.63

Jul $484,920.50 $484,920.50 $17,960.02

Aug $489,741.55 $489,741.55 $16,887.64

Sep $579,676.50 $579,676.50 $21,469.50

Oct $441,873.95 $441,873.95 $16,365.70

Nov $683,332.45 $683,332.45 $23,563.19

Dec $431,022.45 $431,022.45 $17,240.90

2017 Total $6,113,172.35 $6,113,172.35 $18,524.76

Region

East

West

ALLSELECETED()
instructed CALCULATE
to remove the “Quad”
Row Context and jump

back to the Total
Revenue Grand Total

Filter Context

Total Revenue
Grand Total

Filter Context

ALLSELECETED() will NOT be able to
jump back to expose the

Row/Column/Filter/Slicer filtering
from the External Filter Context

because it can only reach back one
iteration, back to the dDate Table.

ALLSELECETED() will ONLY remove the Row Context in the dDate table in the first
argument of AVERAGEX, removing the single day and exposing all the days in the
dDate Table. This means that for each row in the dDate table the Total Revenue
for all the days will be calculated (same number for every row). This is why the

Total Revenue and Average Daily Rev AS Mistake yield the same number.

Page 22 of 42

18) KEEPFILTERS DAX Function :
i. KEEPFILTERS, in brief:

1. Changes the Overwrite Operation in CALCULATE to an AND Logical Test.
ii. KEEPFILTERS, in more detail:

1. Merges the internal filter/s inside of KEEPFILTERS with the full External (Previous) Filter Context
as an AND Logical Test, rather than as an Overwrite Operation.

iii. KEEPFILTERS is not a Table Function.
iv. You can use the KEEPFILTERS function in:

1. Filter argument of CALCULATE
or

2. Wrapped around a table in first argument of an Iterator function.
v. For the examples below we will use the Excel file named “019-MSPTDA-CALCULATE-FilterContext-03-

Start.xlsx”.
vi. Example of KEEPFILTER being used in the filter argument of CALCULATE, is shown below :

1. In the [Just Quad Rev] Measure with a Boolean Filter, the internal filter of “Quad” Overwrites
the external filter for each row in the PivotTable with the result being the “Quad” Total Revenue
in each cell.

2. For the [Just Quad Rev KF] Measure we use the KEEPFILTERS function around the Boolean
“Quad” filter. This means that for each row in the PivotTable an AND Logical Test will be run
between the internal filter and the external filter. In the below picture we can see that the only
row in the PivotTable that gets an answer is the “Quad” row because that is the only row that
gets a TRUE (Product = “Quad”) for the internal and external filters.

vii. To understand the logical of the AND Logical Test for the KEEPFILTERS function, here are two pictorial
examples on the next page:

Page 23 of 42

Page 24 of 42

viii. KEEPFILTERS can also be used to solve a Complex Filter Reduction Error. To understand how
KEEPFILTERS can help with this error, we have to define a “Complex Filter”.

ix. First attempt at defining a Complex Filter :
1. Complex Filter = a filter that combines an OR Logical Test with an AND Logical Test, where

multiple items are selected from the columns involved in the filter.
i. Example:

ii. As seen in the below picture, we have four AND Logical Tests that are being used as
individual elements in an OR Logical Test. In addition, there are multiple items selected
for the Year and Month Columns, where the years 2017 and 2018 are selected on the
Year Column and the months Nov, Dec, Jan and Feb are selected on the Month Column.

2. If we looked at this Complex Filter individually, as separated columns, we would see this:

3. The problem with listing the columns individually, as in the above picture, is that we lose the
definition of the AND and OR Logical tests, we lose the logic of the Complex Filter. We can no
longer tell which year goes with which month.

4. Now we want to remember our Excel skills from the pre-requisite class Busn 218. If we were to
use the Advanced Filter feature or Excel Database Functions, the combination of the AND and
OR Logical Tests for our example would look like the below picture, where the AND Logical Test
is listed on a single row and the OR Logical Test is listed on separate rows.

Year Column Month Column

2017 AND Nov

OR

2017 AND Dec

OR

2018 AND Jan

OR

2018 AND Feb

Year Month

2017 Nov

2017 Dec

2018 Jan

2018 Feb

Page 25 of 42

5. As seen on the previous page, Complex Filters will always look like tables (relations from Relational Algebra terminology) with two or
more columns and two or more rows, and there are multiple items select for the columns (2017 and 2018 selected on Year; Nov, Dec,
Jan and Feb selected on Month). This means that the two columns are locked in a relationship and cannot be separated. For example,
for the first row in the above filter, the Year 2017 and the Month Nov must be used together in an AND Logical test. In the last row, the
Year 2018 and the Month Feb must be used together in an AND Logical test. Because we can NOT separated the two columns that exist
in the External Complex Filter Context, if we had an internal filter for the Year Column and it removed the Year column from the External
Complex Filter Context, it would destroy the Complex Filter and cause a “Complex Filter Reduction Error”.

6. Before we define what a “Complex Filter Reduction Error” is, we want to look at a definitive way to determine if your filter is a Complex
Filter.

7. The rule for determining if you have a Complex Filter is :
i. If you execute a CROSSJOIN on the columns involved in the Complex Filter and the result has more rows to iterate than the

original Complex Filter, then you have a Complex Filter.
8. As seen below, if we execute a CROSSJOIN on the two columns involved in our External Complex Filter, we would end up with eight rows

to iterate over rather than the original four rows. In this way, we know that we have a Complex Filter. If this Complex Filter is in the
External Filter Context of our Excel PivotTable or Power BI Visual, then we may run the risk of a Complex Filter Reduction Error, which we
will define next.

Page 26 of 42

x. Complex Filter Reduction Error can happen when:
1. We have a complex filter on two or more columns in an Excel PivotTable Report or Power BI

Visualization (report).
2. In a Measure, we have an Iterator function that is iterating over one or more of the columns

involved in the external complex filter.
3. Context Transition (Row into Filter Context) is occurring for the Measure in the report and for

the 2nd argument in the iterator.
4. The Overwrite process in CALCULATE replaces the External Column/s with the Internal

Columns/s and leads to the incorrect number of iterating rows in the Iterator function.
5. This problem only happens when a complex filter is used in report (External Filter Context), the

Iterator in the Measure uses the same one or more columns internally, and then uses the
internal columns to overwrite the external complex filter columns.

6. The KEEPFILTERS function can help to solve this error by instructing CALCULATE to use an AND
Logical test rather than the Overwrite Operation.

xi. When we should use the KEEPFILTERS function to avoid a Complex Filter Reduction Error:
1. We have a Measure that contains an Iterator function that is using one or more columns to

iterate across.
2. The same one or more columns in the first argument of the iterator are used in the External

Report and may be filtered as a complex filter.
3. When we have Iteration and Context Transition in our Measure that might create the wrong

number of iterations, and so we need to use KEEPFILTERS to force the CALCULATE function
Overwrite Operation to be executed as an AND Logical Test.

xii. Example 01 of KEEPFILTERS in first argument of an Iterator to solve Complex Filter Reduction Error :

1. File name for example: “019-MSPTDA-CALCULATE-FilterContext-03-Start.xlsx”
2. Here is what our Data Model looks like:

Page 27 of 42

3. In the below example we have a complex filter in the external report based on the Year and
Month Columns that are part of the Date Hierarchy, as seen here:

4. As seen below, the [Ave Year Rev] Measure uses the dDate[Year] column in the first argument
of the Iterator AVERAGEX. This is the same column that is being used in the External Complex
Filter in the Row Area of the PivotTable:

5. Once we have these facts, we run the risk of a Complex Filter Reduction Error:
i. Complex Filter in external report.
ii. Iterator Measure that uses a column from the External Complex Filter.
iii. Context Transition for the Measure uses the internal column to overwrite external

column, and in the process, we lose the filtering specifications from the External
Complex Filter and will iterate over the incorrect number of rows leading to the
incorrect result for our Measure.

1) Complex Filter:

Year Column Month Column

2017 AND Nov

OR

2017 AND Dec

OR

2018 AND Jan

OR

2018 AND Feb

dDate[Year] is
the same

Column used in
Internal Filter
Context and a

External
Complex Filter

Page 28 of 42

6. To see how the error occurs, we will first take a look at the External and Internal Filter Context
for the [Ave Year Rev] Measure in the 2017 Total cell. Remember that a hidden CALCULATE
function is wrapped around every Measure and pulls the External Filter Context into the
Measure to be merged with the Internal Filter Context. Here is a picture:

7. In the above picture, realize that the yearly average for a single year (2017) is a single number
divided by one. Which seems silly, but we need to learn how this cell is calculated to understand
how the error in the Grand Total cell occurs.

8. For the above picture, the External Filter Context contains the Year column and Month column
combined into an AND Logical Test. This means that the two columns are related. This
relationship between the two columns will be broken when the CALCULATE Overwrite process
removes the Year column from the External Complex Filter and replaces it with the internal
column.

9. As the first part of the Overwrite process, when the Year is removed from the External Filter
Context, because the Month column was related to the Year in a specific way and it no longer
has the relationship, all four months are used, as seen here:

10. In the second part of the Overwrite process, the Internal Filter Context with the Year column is

used in place of the Year column in the external filter, as seen here:

[Ave Year Rev] Measure
for the 2017 Total cell

Page 29 of 42

11. The last part of the Overwrite process merges the External Filter Context with the Internal Filter
Context in an AND Logical Test, as seen here:

12. As seen below in the picture, this process instructs the single year row in the dDate[Year]
column (that sits in the VALUES function in the first argument of the AVERAGEX function) to
filter the Fact Table down to just the rows for the Year 2017 and the months Jan, Feb, Nov and
Dec. The Total Revenue for the one 2017 row in the dDate[Year] Table = $12,858,375.14. Then
then the AVERAGEX function divides the single year amount by one to get: $12,858,375.14/1 =
$12,858,375.14. This is not the correct answer because it is NOT based on the total revenue for
ONLY Nov, 2017 and Dec 2017.

Page 30 of 42

13. This process is also used to calculate the incorrect amount for the 2018 Total cell, as seen here:

14. In the Grand Total, the incorrect average is calculated this way:

15. In the above picture, the incorrect answer was caused by a Filter Reduction Error that cause the
AVERAGEX function to iterate over the incorrect number of rows.

16. The DAX solution to the Filter Reduction Error, is to wrap the KEEPFILTERS function around the
Year column filter to force an AND Logical Test to run rather than the Overwrite Operation.

17. As seen on the next page, KEEPFILTERS forces the full External Filter Context and the internal
filter on Year to be merged as an AND Logical Text to get the correct average for the filtered
yearly amounts of $6,495,884.93.

18. The key to how KEEPFILTERS solves the Complex Filter Reduction Error is that it runs an AND
Logical Test rather than a Overwrite Operation, as seen in the 2017 Total cell for the [Ave Year
Rev KF] Measure in the picture on the next page:

Page 31 of 42

Page 32 of 42

xiii. Example 02 of KEEPFILTERS in first argument of an Iterator to solve Complex Filter Reduction Error :
1. In the below picture, we see a complex filter on the Year and Month columns in the External

Report and we are iterating over the Year & Month columns in the first argument of AVERAGEX
to calculate Average Monthly Revenue. The [Ave Month Revenue] Measure makes a Complex
Filter Reduction Error. The [Ave Month Revenue KF] Measure does NOT make a Complex Filter
Reduction Error because the KEEPFILTERS functions forces an AND Logical test when it merges
the filters in the first argument of the AVERAGEX with the External Filter Context. A description
for there two Measures and for a Data Modeling Solution for the Complex Filter Reduction Error
(rather than a DAX formula solution) are shown in the below picture:

For the [Ave Month Revenue]
Measure in the Grand Total cell,
the Internal Columns for Year and
Month replace the External
Complex Filter Columns of Year and
Month. This means that the
CROSSJOIN Function produces
eight rows for the [Total Revenue]
Measure to iterate over: 2017-Nov,
2017-Dec, 2017-Jan, 2017-Feb,
2018-Nov, 2018-Dec, 2018-Jan,
2018-Feb, rather than the correct
four rows containing the months
2017-Nov, 2017-Dec, 2018-Jan,
2018-Feb.

$3,231,498.4 is NOT correct.

For the [Ave Month Revenue
KF] Measure in the Grand Total
cell, the Internal Columns for
Year and Month are merged in
an AND Logical Test with the
External Complex Filter Columns
of Year and Month. The correct
four rows containing 2017-Nov,
2017-Dec, 2018-Jan, 2018-Feb
are used to calculate monthly
revenue, and then those
amounts are used by the
AVERAGEX function.

$3,247,942,47 is correct.

The final Measure, [Ave Month
Rev], is perhaps the best way to
deal with a Complex Filter
Reduction Error. The problem
was solved in the Data
Modeling phase of our project.
Rather than risk using the same
Year and Month Column from
the PivotTable inside the
Measure, we create a separated
YearMonth column in the Date
Table that: 1) creates the
correct grain for our iterator,
and, 2) will not be involved in
an Overwrite Operations
because it is a different column
than the Year and Month.

Page 33 of 42

15) Expanded Table Concept & Relationships :
i. Assumptions and Notes before covering Expanded Tables :

1. When we think of Relationships between tables, we know that filters flow from the One-Side to the Many-Side, just as the arrow points.
2. This discussion about Expanded Tables will not cover Expanded Tables with Bi-Directional Filtering. In this class we will not be use Bi-

Directional Filters that are available in Power BI Desktop. There are other ways to accomplish Bi-Directional Filtering that have less risk
(risk of ambiguous model). When we need to get a filter to flow from the Many-Side to the One-Side without using Bi-directional
Filtering, we will use the DAX CROSSFILTER function or Table Filters.

3. This discussion about Expanded Tables will mostly avoid talking about Snow Flake Data Models. In this class we are creating Star Schema
Data Models that are de-normalized, not Snow Flake Data Models. It is easy enough for us to use Power Query in the Data Modeling
phase of a project to convert Snow Flake to Star Schema Data Models. With Star Schema Data Models, DAX Formulas are easier, we
don’t have PivotTable “Auto-Exist” Problems and Expanded Table diagrams are less complicated.

ii. Expanded Table Concept & Relationships :
1. In DAX, every table has a corresponding expanded table, which contain all columns from the table itself plus all columns from the tables

that can filter the original through a one-to-many relationship. See diagrams on next two pages.
2. In a Star Schema Data Model with a Fact Table and Dimension Tables with One-To-Many Relationships, this means that the Fact Table

will contain all columns in the Data Model.
3. The Expanded Table diagram can be helpful because:

i. It shows a complete list of all columns, that when filtered, will filter the table.
ii. It allows you to see that when you use a Table as a filter in the Filter Argument of CALCULATE, all the columns in that table will

be used as filters.
iii. The implication of Expanded Tables is that when we use a table as a filter, this allows us to send a filter from the Many-Side to

the One-Side.
4. Marco Russo and Alberto Ferrari use a particular Expanded Table Diagram in their Definitive DAX book that helps to visualize Expanded

Tables. On the next two pages you can see a picture of our Star Schema Data Model using an Expanded Tables diagram and of a Snow
Flake Data Model using an Expanded Tables diagram.

ii. Files we will use the Expanded Table Examples are these:
1. “019-StarSchemaDataModel.xlsx”
2. “019-SnowFlakeDataModel.xlsx”

Page 34 of 42

Star Schema Data Model and Expanded Table Diagram:

Page 35 of 42

Snow Flake Data Model and Expanded Table Diagram:

Page 36 of 42

Page 37 of 42

17) Table Filters & Expanded Table as filters in the Filter argument of CALCULATE:
i. When we use Table Filters in the Filter argument of the CALCULATE function, all columns in that table

will have an affect.
1. Examples:

i. ALL Table Filter:
CALCULATE([Total Sales],ALL(fTransactions)) will remove all columns from
the Expanded fTransactions Table and therefore the Data Model.

ii. ALL Column Filter:
CALCULATE([Total Sales],ALL(dProduct[Product])) will affect the [Product]
column in the dProduct table and the [Product] column in the fTransactions
Expanded table.

iii. Table Filter to go Backwards Across Many-To-One Relationship:
CALCULATE(DISTINCTCOUNT(dDate[Month]),fTransactions) will allow all
columns in the Expanded fTransactions Table to flow to the dDate Table. If
you have a PivotTable Row Area filter for a Product flow into the Measure,
the formula will count the number of unique months that the product was
sold.

iv. Use Expanded Column from Expanded Table (Column not in original table!):
ALLEXCEPT(fTransactions,dDate[Month])) is an example of using the full

Expanded fTransactions Table to exclude a column from different table. The
ALL will remove all filters from the Expanded fTransactions Table, except for
the filters on the dDate[Month] column.

ii. Examples from video on next page:

Page 38 of 42

Page 39 of 42

17) DAX Formula Evaluation Context Summary :
i. There are Two Evaluation Contexts:

1. Row Context = allows a formula in a Calculated Column or an Iterator Function or in a
PivotTable/Power BI Visualization to see the row and use the values from the row to make a
Row-By-Row Calculation.

2. Filter Context = all the Filters / Conditions / Criteria that filter the underlying tables in the Data
Model to provide the final values for the Measure to use to calculate the final answer.

ii. CALCULATE and CALCULATETABLE DAX functions can do these two things:
1. Change the Filter Context.
2. Perform Context Transition, which takes all available Rows Contexts and merges them with an

AND Logical Test and converts then to Filter Context.
iii. All Measures have a hidden CALCULATE function wrapped around it.
iv. There are two types of Filter Contexts that are used to determine the Final Filter Context under which

the Measure makes its final calculation:
1. External Filter Context = Filters / Conditions / Criteria from Excel PivotTables or Power BI

Visualizations.
2. Internal Filter Context = Filters / Conditions / Criteria from inside the CALCULATE function.

v. How Final Filter Context is determined:
1. Filters / Conditions / Criteria from Excel PivotTables or Power BI Visualizations flow into a

Measure.
2. Inside the Measure the internal and external filters are merged into the Final Filter Context

using the operators:
i. And Logical Test (Intersect)
ii. Overwrite
iii. Remove

vi. When the ALL functions is used in a CALCULATE Filter argument, all the filters for the column, columns
or table are removed and become an empty filter.

vii. When Complex Filters exist in the External Filter Context and the same columns are used in the first
argument of an Iterator function, then you can use KEEPFILTERS to perform an AND Logical Test rather
than Overwrite.

viii. ALLSELECTED removes the last filter generated from context transition. When the last filter generated
by Context Transition is the Row Context in a PivotTable, ALLSELECTED() can help to calculate the correct
filtered Grand Total amount.

ix. Column filters work on just the column.
x. Table filters work on Expanded Table and can go backwards across One-To-Many Relationship.

Page 40 of 42

25) Examples of Time Intelligence Functions as filters in CALCULATE :
i. Time Intelligence Functions work with Date and Time and require a Date or Time Table in order to work

correctly.
ii. A Few Examples of Time Intelligence Functions:

1. SAMEPERIODLASTYEAR
i. This function Returns a table of dates.
ii. When you provide the Primary Key Column from a Date Table, SAMEPERIODLASTYEAR

will see the External Filter Context for the date, whether or not it is a day, month,
quarter or year, and it will jump back one year and get the correct “One-Year-Back”
Dates and provide it as a valid list of dates to the CALCULATE function. CALCULATE will
change the Filter Context and the Final Filter Context will be the dates for that “One-
Year-Back” period. The underlying Date table will be filtered to those “One-Year-Back”
Dates and the Measure will make its calculation based on those “One-Year-Back” Dates.

2. DATEADD
i. This function Returns a table of dates.
ii. The DATADD function can move forward or backwards for a certain interval (Day, Month

or Year). It will provide a valid list of dates to the CALCULATE function so the Measure
can make the calculation based on the Change Filter Context.

3. TOTALYTD
i. This function calculates cumulative totals.
ii. This function can see the External Filter Context for Dates and change the internally

create a list of dates for a running, cumulative total, then create the correct Final Filter
Context to the measure can calculate a cumulative total. We saw this function back in
video#15.

4. DATESINPERIOD
i. This function Returns a table of dates.
ii. Returns a table that contains a column of dates that begins with a specified start date

and continues for the specified number of intervals. We used this DAX function in video
#16 to construct a set of dates for a 12-month running average.

5. LASTDATE DAX
i. This function Returns the last date that is listed in the External Filter Context.
ii. We used this DAX function in video #16 to construct a set of dates for a 12-month

running average.
iii. We will see more Time Intelligence functions later in the class.
iv. Example from the video shown on next page:
v.

Page 41 of 42

Page 42 of 42

26) ISFILTERED, HASONEVALUE, BLANK, COUNTROWS DAX Functions :
i. ISFILTERED

1. This function delivers a TRUE if the column is filtered and FALSE if the column is not filtered.
2. Example:

ii. HASONEVALUE
1. HASONEVALUE is a DAX function that yields a TRUE when a Column shows one value and a

FALSE when the column shows more than one value.
2. The HASONEVALUE function is often used when you need a FALSE value in a Grand Total Cell.

iii. BLANK
1. BLANK() DAX function is like a Null in a Database or Power Query or like an Empty Cell in an

Excel Spreadsheet. It is not a “Zero Length Text String” (Two Double Quotes in an Excel formula
like: “”).

2. The BLANK() DAX function can be used as a function that is typed into a formula, and it is
automatically uses in the third argument of both the IF and DIVIDE DAX Functions.

iv. COUNTROWS
1. This functions delivers a count of rows in a table. It is a helpful function when you want Filter

Context to filter a Table and then determine how many rows are in the table. Seen in this video
to calculate the frequency on a Frequency Distribution calculation where we count between a
lower and upper limit.

