
Page 1 of 47

Data Analysis Made Easy with Microsoft Power Tools

05 DAME Video: M Code in Power Query

Table of Contents
History ... 3

Power Query and M Code ... 3

M Code as Compared To Other Three Functional Languages .. 3

User Interface & M Code .. 4

Three places to edit M Code ... 6

Expression .. 6

M Code Values ... 7

Type values and data types .. 8

Operators, values, and data types ... 9

Identifiers, Keywords .. 11

Let expression ... 12

Null Value ... 13

Logical values .. 13

Text Value ... 13

Number values ... 14

Date, Time, Datetime, Datetimezone and Duration .. 15

Duration value .. 15

Date value .. 16

Time value ... 18

Datetime value .. 19

Datetimezone value ... 20

Tables, records, and lists ... 21

List value .. 21

Record value ... 22

Table value ... 22

Binary value .. 23

M Code Lookup Formulas ... 24

Rules for row index lookup ... 26

Rules for key match lookup: ... 26

Drill Down, lookup formulas and primary keys ... 28

Approximate match lookup .. 42

Table.Buffer function ... 42

Join operations used by Merge feature ... 29

Custom function value ... 31

Each and underscore to create custom functions.. 32

Page 2 of 47

If expression ... 34

Table.AddColumn function ... 34

Excel.CurrentWorkbook function ... 35

Csv.Document function ... 36

File.Contents function ... 39

On-premises file and folder paths .. 40

Data source settings ... 41

Table.Group function ... 44

Table.Group fifth argument: Comparer .. 45

Comparer functions and where to use them ... 45

Page 3 of 47

History

Power Query was first introduced in Excel in 2013, exactly 20 years after the PivotTable was

invented. For 20 years the PivotTable was the preferred method of taking a table of data and

converting into a useful summary reports and chart visuals. The PivotTable was easy to use if

you had a correctly structured table with column names and records. But often the data came

from many different sources and did not have the correct table structure to create the reports

and chart visuals. To get the correct structure for the PivotTable tool, we would use VBA code or

manually convert the data into correct structure. When Power Query arrived, it dramatically

improved our ability to take data from different data sources and then clean, transform and load

the data to the best location in the Excel workbook file. Then in 2015, Power BI Desktop was

invented to easily report and visualize data. Microsoft embedded Power Query into Power BI

Desktop to make connecting to and structuring data easy. Finally, in about 2023, Microsoft

finally gave us the full Power Query tool in the Power BI Online Service and they called it

Dataflow. Now, with whatever tool you may be using, Power Query allows you to connect to

almost any data source and transform the data into just the structure you need to create your

data analysis and analytic solutions.

Power Query and M Code

Power Query is a Microsoft tool that allows you to create queries that can connect to, import,

clean, transform and load data. The amazing Power Query tool is in the apps: Excel, Power BI

Desktop, and the Power BI Online Service (called Dataflow). All Power Query queries are created

with the programming language called M Code. Microsoft gave it the name M Code because they

described what the tool could do as “Mashup Data”. The M in Mashup is the M in M Code. M

Code is officially defined as a case-sensitive, function-based language that can deliver M Code

values, such as tables, lists, numbers and 12 other data related values. When you create a

Power Query query, you can use the user interface to write the M code, you can type your own

M Code, or use a combination of both. The function-based M Code language is a complement to,

and works closely with, the other three Microsoft function-based languages in Excel and Power

BI: worksheet formulas, Standard PivotTables and Data Model DAX formulas. All four function-

based languages help you perform calculations, analytics and data analysis. To help place Power

Query M Code into the correct context, I will describe the main characteristics of each functional

language.

M Code as Compared To Other Three Functional Languages

The hallmarks of worksheet formulas are that you can point your formula to any cell, range,

column or table in the Excel worksheet. The other three languages cannot do that: they are all

confined to structured data such as tables and columns. With worksheet formulas you have

freedom to incorporate any part of the worksheet, such as tables, columns, ranges or cells. You

are not limited to a strict column and table data structure like with Standard PivotTables, DAX

formulas or M Code. There are also many convenient worksheet functions such as XLOOKUP,

NETWORKDAYS.INTL and BINOM.DIST.RANGE that are not available in the other functional

languages. Finally, worksheet formulas allow a solution to instantly update when the source data

changes. The other three languages do not allow instant update when the source data changes.

The hallmark of standard PivotTable calculations is that for summing, counting and calculating

percentages, there is no other calculation tool that is as fast and easy to use as the standard

PivotTable. When it comes to the DAX functional language, the hallmarks are that you can work

Page 4 of 47

with big data more quickly than any of the other languages and you can create tables at various

grains inside DAX formulas to help reduce the complexity of the calculation process. The DAX

language has powerful functions that the other languages do not have such as CALCULATE,

AVERAGEX and RELATEDTABLE. As for M Code, the hallmark is that it allows you to work with

data, tables, data sources such as SQL databases, columns of tables, columns of files and other

structures that contain data in ways that none of the other languages can. M Code is specifically

programmed to work with data and allows you to shape and form the data into efficient

structures that can be loaded to the worksheet, the PivotTable cache, or the Data Model in either

Power Pivot or Power BI. In addition, M Code is the only language that allows you to write most

of your formulas using the user interface. Each functional language has its own power and magic

to help you make calculations and perform data analysis, but for this book it is Power Query M

Code’s unique ability to work with and shape data that we will study.

User Interface & M Code

Even when you become a master of M Code, you will often use the user interface to write your M

Code. Sometimes the user interface generated M Code will be perfect, other times you will edit

the generated M Code to better meet your needs. I usually use the user interface to create most

of my initial M Code, and then edit and hack the code to get just what I want. Throughout this

book I will show you good hacks to get the user interface to write as much of the M Code as

possible. To get started, the following three pictures (Figures 01 to 03) on the next page review

the user interface in Excel, Power BI Desktop and Dataflow.

Page 5 of 47

Figure 01: Power Query Editor in Excel.

Figure 02: Power Query Editor in Power BI Desktop.

Figure 03: The Dataflow Power Query Editor is similar to the other two editors.

Page 6 of 47

I will work almost exclusively in Excel’s Power Query and take screen shots from within that app.

When there are differences in the user interfaces, I will indicate the differences.

Now that we have reviewed the user interface, let’s get started by creating a query using the

user interface and then dive into M Code from there.

Three places to edit M Code

The three locations that you can edit M Code are listed below (in Power BI Desktop and

Dataflows the Advanced Editor is in a different location as shown on previous page).

• Applied Steps

• Formula Bar

• Advanced Editor

Figure-04: The three locations to edit M Code.

Expression

An expression is any M Code that results in a value.

Some examples of expressions:

• A function like Table.ColumnNames(TableName).

• A list.

• A number.

• A query step within a let expression.

• A full let expression.

Page 7 of 47

M Code Values

Figure-05: M Code values.

An M Code value is what is produced by evaluating an expression. Figure-05 shows a list of all

15 values, a short description for each, and the M Code to hard code the value.

Page 8 of 47

Type values and data types

Figure-06: Data types that classify M Code values.

A type value is a value that classifies other values with one of the 16 data types as shown in

Figure-06. Data types are safeguards placed on columns to produce consistent data and

accuracy in calculations and can change the underlying value to a new value if necessary. A

value that is classified by a data type is said to conform to that data type. For example, if you

apply the Whole number data type to a source column of number values with digits to the right

of the decimal, new number values are created that are rounded to the ones position so that the

new numbers conform to the definition of Whole number data type. In addition, if you load the

whole number data to the worksheet or Data Model, all your calculations are based on the new

whole numbers, not the original source number values. Further, if you change your mind about

applying a data type, you are allowed to revert to the original source values before the data type

was applied. This is possible because access to the source data values is stored in a query step

that occurs before the query step that applies the data type. When you revert to the original

source data, or you change the data type from one type to another, the query, the loaded data,

and any analysis based on the loaded data, all are updated to match the new data type. A

common example of using data types to change the source data to benefit analysis is when you

get ISO text date values (YYYYMMDD). These values will not work as true dates in the worksheet

or Data Model. But if you apply a date data type to the date text values, the text date values will

be converted to date values. The date values would then work as true dates for your analysis.

Next, we want to introduce how M Code values and operators interact.

Page 9 of 47

Operators, values, and data types

Operators are applied to operands to form expressions. For example, in the expression 43 + 7

the number values 43 and 7 are operands and the operator is the addition operator (+). Figure-

07 lists the M Code operators with a description and an example for each. In the figure, the list

of operators presents the operator categories in order of expression evaluation precedence

(order of operations), from highest to lowest. Operators in the same category have equal

precedence. Many of the operators in the list are the same operators that we use in the

worksheet and DAX. However, the application of operators works much differently in M Code

than in the worksheet and DAX. For example, in the worksheet and DAX if you want to add the

number value 10 days, to the date value 11/01/2023, the formula is: 11/01/2023 + 10 =

11/11/2023. This type of formula does not work in M Code. In M Code, for most operators,

both operands must have equivalent value types. In M Code you can subtract a date from a date

because both are date values, but you cannot directly add a number to a date because a number

value is not equivalent to a date value. Calculations like adding a number to a date are easy to

perform in M Code, it is just works differently than in most other systems. If you do need to add

a number to a date, you use the easy-to-interpret function Date.AddDays, or you add a duration

value to the date, which is one of the exceptions to our rule. In addition, each M Code value has

a different defined set of operators. For example, the only math operators defined for time and

date values are addition and subtraction, whereas for number values the operators,

multiplication, division, addition, subtraction and unitary plus and minus are defined, but not

exponentiation operator (^). Exponentiation operations require the use of the Number.Power

built-in function. Still further, when you need to add a time to a date in the worksheet and DAX,

you use the addition operator. But in M Code you use the join operator. This means that it is

crucial to learn the designated set of operators for each M Code value type. The key to applying

operators to operands is to make sure that both operands have the same value type (exceptions

are duration, null and date-time join values) and always check the list of defined operators for

the given M Code value.

Also, don’t confuse data types with values when applying operators. For example, if you apply

the Any data type to a column of number values and to a column of text values, you cannot

apply an operator between the two columns because, although the data type is the same for

each column of values, the underlying values are different. As another example, when you apply

the data type Decimal, or Currency (Fixed in Power BI), or Whole number or Percentage to a

column of number values, the underlying numbers are all still number values, so you are allowed

to mix and match those data types with operators. This comes from the definition of an M Code

number value: a number value is used for numeric and arithmetic operations. So regardless of

whether a column of number values has the Decimal, Currency (Fixed), Whole number or

Percentage data type applied, the number values are all still numbers that can be used in

arithmetic operations. It is the M Code value that determines the type of operation, not the data

type. Next, we want to consider the null value.

Page 10 of 47

Figure-07: M Code operators and order of precedence.

Page 11 of 47

Identifiers, Keywords

Looking at Figure-08 (I added some hard returns and tabs to make the picture easy to see), the

first thing you want to notice are the keywords: let, in, each and type.

Figure-08: Query let expression named DayTypeSaloesQ.

Keywords are reserved words that have a predefined use, such as the word let which is

reserved as the keyword to indicate the start of a let expression, the keyword in which ends the

query steps and precedes the query output, the keyword each which allows a formula to

calculate in each row of a table or list, and the keyword type which assigns data types. In M

Code, keywords appear in blue. Figure-09 shows a list of some of the possible keywords.

Figure-09: A list of reserved keywords in M Code.

The next thing you want to notice in Figure Ch01-08 are the identifiers such as DayTypeSalesQ,

Source, AddDataTypes and #”Group By DayType”. An Identifier is a name used to refer to an

expression that delivers an M Code value (such as a number, a list, or a table).

Note: If Identifiers use spaces, you must house the identifier in quotes and place a # sign

at the beginning. This is to distinguish an identifier from text, which requires quotes but

not a # sign. To make your M Code easier to read, avoid spaces when creating identifiers.

For example, use the identifier GroupByDayType rather than #”Group By DayType”.

Note: Generalized Identifier are identifiers that allow spaces without the # sign and

quotes. Generalized Identifiers are allowed in either:

Page 12 of 47

1) The name of a column in a record literal like: [Boom Product = "Quad", Sales = 43]

2) The name of a column in a field access operator like: [Boom Product].

3) The name of a column in the lookup operator like: {[Boom Product = “Quad”]}

We’ll learn much more about Generalized Identifier later in this book, but I wanted to list

the full identifier details here is this section of the book.

Let expression

The let expression allows you to define variables, also known as query steps, and use them

throughout the let expression to deliver a final query value (query output). let expressions can

be used in any M Code to define variables, but most often the let expression is used to define a

new query and deliver a query output. Every time you start a new query and select commands

from the user interface, Power Query automatically records the commands you select in a let

expression. The syntactical rules for a let expression are listed on the next page:

The syntactical rules for the let expression are listed below in three different forms: bulleted list,

query let expression example (Figures-10) and cheat sheet with notes (Figure-11).

• Start the let expression with lower case let.

• Each variable, or query step, starts with an identifier, followed by an equal sign, then the

expression. The identifier represents the expression throughout the query.

• Variables are usually used in the first argument of the function in the following step to

modify the previous step, but can be used anywhere throughout the let expression.

Variables cannot be used outside the let expression.

• Each variable is followed by a comma. The comma allows the let statement to deliver an

intermediate value, such as a table that can then be acted on further or used in other

locations in the query.

• The last variable does not end with a comma. By putting no comma, the let expression

expects the keyword in to come next, followed by the query output.

• End the let expression with lower-case keyword in followed by the identifier for the final

value to be delivered by the query. The output of the query is almost always the

identifier of the last query step; however, the output can be any of the variables defined

in the let expression, any other query in the file, or any expression.

• You can add non-executable comments to your M Code by add two forward slashes, like

//, for single-line comments, or multi-line comments that begin with /* and end with */.

Figure-10: Rules for let expression.

Page 13 of 47

Figure-11: Cheat sheet for the syntax of the let expression.

Null Value

A null value represents the absence of an M Code value. The literal syntax for hard coding a

null value into M Code is null, all lowercase. When using a null, an operator and any of the other

value types in an expression the result is a null value. For example, 5 + null = null, “Quad” &

null = null, 43 >= null = null. As I mentioned in the previous section, the null value is an

exception to the rule that operators must work on equivalent value types, but the result will

always be null.

Logical values

A logical value is one of two possible Boolean values: true or false. The literal syntax for hard

coding logical values is true or false, all lowercase. Figure-12 shows the operators defined for

logical values. To type the literal syntax for a true value and build two formulas using logical

values, follow

Figure-12: Operators that are defined to work between two logical values.

Text Value

A text value is a string of Unicode characters. The literal syntax for hard coding a text value

into M Code is to put the characters in quotes, like “Quad” for the word Quad. Figure-13 shows

the operators defined for text values.

Page 14 of 47

Figure-13: Operators that are defined to work between two text values.

Number values

A number value is used for numeric and arithmetic operations. The literal syntax for some

possible number values is shown here:

• 1,210

• -43

• 20.3524

• 12.5874441875555

• 0.025 or 2.5%

• 0.00157 = 1.57E-03

• 2560000 = 2.56E+06

• #infinity = like from the operation 1/0

• -#infinity = like from the operation -1/0

• #nan = like from the operation 0/0

A number is represented with at least the precision of a Double (but may retain more precision).

The Double representation is congruent with the IEEE 64-bit double precision standard for binary

floating-point arithmetic defined in [IEEE 754-2008]. The Double representation can be zero or

can range from -1.797693134862315E+308 to -2.225073858507201E-308, or from

2.225073858507201E-308 to 1.797693134862315E+308.

Figures 14 and 15 show the operators defined for number values.

Page 15 of 47

Figure-14: Operators that are defined to work between two number values.

Figure-15: Number values can perform three operations with duration values.

Whereas Figure-14 shows operators defined for number values, Figure-15 shows that for three

operations, the duration value can be used with number values. As I mentioned in the operator

section of this chapter, the duration value is an exception to the rule that operators must work

on equivalent value types. We have not studied the duration value yet, but I wanted to list the

duration related operations in this section so that when you need to look up the operators for

numbers, they are all in one place. Briefly, a duration value is an amount of time in units of

days, hours, minutes, and seconds. So, the fact that you can multiply a number value by a

duration or divide a duration by a number makes sense. For example, 2 times the duration of

two days would yield 4 days. We will see how to make this type of duration and number value

calculation in the upcoming duration value section.

Date, Time, Datetime, Datetimezone and Duration

The time and date related values in M Code are: date, time, datetime, datetimezone and

duration. When you hard code each of these values you use an intrinsic functions to deliver the

value. A description of these values, an example of each intrinsic function, and several

expression examples follows in the next five sections. Because the duration value interacts with

the other date and time related values, we will look at the duration value first.

Duration value

A duration value is encoded as a serial number that represents an amount of time in units of

days, hours, minutes, and seconds. A duration can be negative or positive. There is no literal

syntax for durations, but you can use an intrinsic function to hard code a duration value, as

shown here:

Intrinsic function: =#duration(days, hours, minutes, seconds)

Page 16 of 47

Example: =#duration(1,0,10,0) = 1:00:10:00 = 1 day and 10 minutes

Duration values are important in M Code because they can interact as an operand with the date,

time, datetime and datetimezone and number values. For example, if you want to add 10 days

to a date, you cannot use the formula 1/1/2023 + 10 because the value types for the date and

number are not equivalent. But you can use the formula 1/1/2023 + #duration(10,0,0,0) and

the result will be 1/11/2023. As a second example, if you want to add 2 hours to a datetime

value, you cannot use the formula 1/1/2023 8 AM + 2:00 because the value types for the

datetime and time are not equivalent. But you can use the formula 1/1/2023 8 AM +

#duration(0,2,0,0) and the result will be 1/1/2023 10 AM. Still further, if you subtract an earlier

date from a later date to get number of days, the result will be a duration. For example,

1/11/2023 - 1/1/2023 = #duration(10,0,0,0), or 10 days. Finally, if you have an amount of time

as a duration and you want to double that time, because multiplication is defined between

numbers and durations, you can simply multiply the time duration by two. If you are working in

the app Dataflow, Microsoft’s documentation says that duration values are not supported in

Dataflow. I have found that I can use a duration values embedded in formulas if the formula

does not deliver a duration value and the formula does define a duration data type. Duration

values do not exist in the worksheet or Data Model. If you load them to the worksheet or Data

Model, they are converted to datetime values. Figure-16 shows the operators defined for

duration values. The lists of defined operators that work between duration values and other

values are shown later in this chapter.

Figure 16: Operators that are defined to work between two duration values.

Date value

The format for dates depends on the regional settings for your computer. For example, in the US

a date is shown as mm/dd/yyyy and in France a date is shown as dd/mm/yyyy. I will use the US

date format for all examples in this book. However, the Using Locale feature that allows us to

work with dates from other locals and other formats. M Code date values are different than

dates in the Excel worksheet. In the beginning of spreadsheet history, Lotus 1-2-3, and then

Excel incorrectly assumed that the year 1900 was a leap year and that the day 2/29/1900

existed. This error persists in worksheets today. In addition, the earliest possible date in the

Excel worksheet is 1/1/1900. M Code date values remedies both deficiencies. Date values in M

Code do not list 2/29/1900 as a valid date. In addition, M Code date values span from 1/1/0001

to 12/31/9999 (Common Era on the Gregorian calendar).

Note: Although you can perform date math calculations in Power Query on all Gregorian

calendar dates, if you start with whole numbers and apply the date data type, the

smallest number is - 657,434 which corresponds to the date 1/1/0100.

Page 17 of 47

If you are using dates before 1/1/1900 in a query and you load the query results to the Data

Model in Power Pivot or Power BI, the dates will work as valid dates; however, if the same dates

are loaded to the Excel worksheet, the dates before 1/1/1900 will be loaded as text dates rather

than valid date values. As in the Excel worksheet, M Code date values are encoded with serial

numbers that help formulas perform date math. However, M Code date serial numbers are

different than the date serial numbers in the Excel worksheet.

As shown in Figure-17, serial numbers in the worksheet and in M Code are the same for dates

on 3/1/1900 or after, but the dates between 1/1/1900 and 2/28/1900 are off by one. In the

worksheet, dates entered before 1/1/1900 are considered text values, with a left alignment, and

therefore do not have serial numbers, as shown in Figure Ch02-29. In M Code, date serial

numbers are negative starting with the date 12/29/1899 and increment by -1 until the first

possible date. Notice that the worksheet serial number for 2/29/1900 is 60, but the M Code

serial number for 2/28/1900 is 60. This bit of Microsoft cleverness allows you to import the date

2/29/1900 and it will be interpreted as 2/28/1900, or import 2/28/1900 with a serial number 59

and it will be interpreted as 2/27/1900 because its serial number is 59. Lastly, in M Code, the

negative and positive date serial numbers allow you to make accurate date formulas, such as:

End Date – Start Date = Number of Days Between Two Dates.

For example, 12/29/1899 – 12/28/1899 = -1 - -2 = 1 day. As another date calculation example,

if you create an expression to calculate 12/28/1899 + 2 days , you get -2 + 2 = 0, which is the

correct date of 12/30/1899.

Figure 17: Some of the possible dates and serial numbers in Power Query and the worksheet.

The definition of a date value is: a date value is encoded as a serial number that represents the

number of days since epoch, starting from January 1, 0001 Common Era on the Gregorian

calendar. The maximum number of days since epoch is 3652058, corresponding to December

31, 9999. There is no literal syntax for date values, but you can use an intrinsic function to hard

code date values, as shown here:

Intrinsic function: =#date(year, month, day)

Page 18 of 47

Example: =#date(1598, 1, 15)= 1/15/1598

Figures-18 and 19 show the operators defined for date values.

Figure-18: Operators that are defined to work between two date values.

Figure-19: These operators permit one or both of their operands to be a date value.

Whereas Figure-18 shows operators defined for two date values, Figure-19 shows the operators

allowed between duration and date values, two date values, and date and time values. In the

above table, the first two rows show that you can add a day duration value to a date value to

get a new date value. For example, this formula would work:

= #date(2023,1,1) + #duration(8,0,0,0) = 1/9/2023

The third row shows that you can subtract a day duration value from a date value to get a new

date value. However, subtracting a date value from a duration value is not defined. For example,

this formula would work:

= #date(2023,1,1) - #duration(8,0,0,0) = 12/24/2022

The fourth row shows that when you subtract a date from a date you will get a day duration,

where the result can be positive or negative. For example, this formula would work:

= #date(2022,12,24) - #date(2023,1,1) = -8:00:00:00

The last row shows that you can merge a date value and a time value to create a datetime value

using the join operator. In the worksheet and DAX, date and time values are merged using the

addition operator, rather than the join operator. Also, notice that the order of operands matters.

Whereas in the worksheet and DAX you can add a time to a date or a date to a time. In M Code

you can only merge a date value with a time value with the formula: date & time.

Time value

As with time values in the worksheet and DAX, an M Code time value is encoded as s serial

number between 0 and 1, which represents the proportion of a 24 hour day, such as 8AM =

8/24 = 1/3 =0.3333. There is no literal syntax for time values, but you can use an intrinsic

function to hard code time values, as shown here:

Intrinsic function: =#time(hour, minute, seconds)

Example: =#time(11,10,57) = 11:10:57

Page 19 of 47

Figures 20 and 21 show the operators defined for time values. Time values have the same set of

defined operators as date values. For example, you can offset a time value with a time duration

value to get a new time value using addition and subtraction, you can calculate the difference

between to time values to get a duration value and you can merge a date and time using the

join operator.

Figure-20: Operators that are defined to work between two time values.

Figure-21: These operators permit one or both of their operands to be a time value.

Datetime value

In M Code, a datetime value is encoded as a serial number that represents the number of days

since 1/1/0001 plus any decimal amount that represents the proportion of a 24 hour day. There

is no literal syntax for datetime values, but you can use an intrinsic function to hard code

datetime values, as shown here:

Intrinsic function: =#datetime(year, month, day, hour, minutes,

seconds)

Example: =#datetime(2021,10,1,11,10,57) = 10/01/21 11:10:57 AM

Figure-22 and Figure-23 show the operators defined for datetime values. The operators defined

for datetime values are the same as the ones defined for date and time values except that you

cannot use the join operator.

Figure-22: Operators that are defined to work between two datetime values.

Page 20 of 47

Figure-23: These operators permit one or both of their operands to be a datetime value.

Datetimezone value

A datetimezone value is encoded as a serial number that represents a UTC (Universal

Coordinated Time) datetime value with a time-zone offset. The time-zone offset is set in the last

two arguments, offset-hours and offset-minutes. The offsets can be negative or positive.

Datetimezone values do not exist in the worksheet or Data Model. If you load them to the

worksheet or Data Model, they are converted to datetime values. There is no literal syntax for

datetimezone values, but you can use an intrinsic function to hard code datetimezone values, as

shown here:

Intrinsic function: =#datetimezone(year, month, day, hour, minute,

second, offset-hours, offset-minutes)

Example: =#datetimezone(2021,10,1,11,10,57,09,0) = 10/01/21 11:10:57

AM + 9 hours

Figure-24 and Figure-25 show the operators defined for datetimezone values. The operators

defined for datetimezone values are the same as the ones defined for date, time and datetime

values except that you cannot use the join operator.

Figure-24: Operators that are defined to work between two datetime values.

Figure-25: These operators permit one or both of their operands to be a datetime value.

So far in this chapter we have studied these nine M Code values: null, logical, text, number,

date, time, datetime, datetimezone and duration. These nine values are called primitive values

because they are single part values. Primitive values are what make up most of the data that we

use to perform data analysis. Next, we want to look at M Code values that have more than one

part: tables, records, and lists.

Page 21 of 47

Tables, records, and lists

Tables, records, and lists are M Code values that can hold more than one value. Most of the

time, tables, records, and lists hold and store the primitive values, or data, that we use to

perform our data analysis. However, they can also hold any of the other M Code values such as

functions and binary (files), and they can even hold values such as tables, records, and lists.

Yes, that is correct, a table can hold other tables, a list can hold other lists, and records can

even hold other records! In addition, there is an important relationship between these three M

Code values. If you start with a table value and lookup (extract, or select) a full row, the result

is a record value. If you start with a table value and lookup (extract, or project) a full column,

the result is a list value. The table itself does not contain record values and list values; the table

contains rows and columns. This is an important distinction because if you try to add a table

column of numbers, you will get an error; but if you lookup the table column and return a list of

numbers, then you can add the list of numbers without an error with a function like List.Sum.

What you want to understand here is that there is a relationship between the three values and

that extracting a table column yields a list value and extracting a table row yields a record value.

Next, we want to take a closer look at each of the three values: list, record, and table.

List value

A List value is a sequence of M Code values. List values can hold any of the 15 M Code Values,

including lists. A list can contain one or more values. A list is not limited to a single value type.

For example, you can have a list that contains number values, text values and date values. You

can think of a list as a column in a table, but technically it is not a list value until the column is

extracted from the table by doing column lookup. There is no intrinsic function to create a hard

coded list. To create a hard coded list value, you use curly brackets to house the list, known as

initialization syntax, and then separate the elements in the list with commas. A hard coded

list is known as a list literal. An example of a hard coded list with two text values is shown

here:

={“Quad”,”Aspen”}

As shown in the below figure, A list within a list is often used to allow you to enter multiple items

into one location. For example, in the Table.Group function in the third argument uses a list with

a list to enter the three paerts for each aggregate calculation: column name, aggregate formula

and data type.

Figure-26: The second and third arguments in the Table.Group function use lists.

Page 22 of 47

In addition, when you extract a column from a table, a list of values is returned. For example,

when a column of numbers is extracted from a table, it is returned as a list of numbers. This is

why the aggregate functions all have the word List before the name of the function, like:

List.Sum, List.Max, List.Count, List.StandardDeviation.

Still further, if you use the dot-dot operator, you can create a sequence of numbers or latters as

shown in the below figure.

Figure-27: The dot-dot operator allows you to create a list sequence of numbers.

Figure-28: The dot-dot operator allows you to create a list sequence of letters.

Record value

A Record value is an ordered sequence of columns with M Code values entered in each column.

Records can hold any of the 15 M Code Values, including records. You can think of a record as a

row in a table, but technically it is not a record value until the row is extracted from the table by

doing row lookup. There is no intrinsic function to create a hard coded record. To create a hard

coded record value, you use square brackets to house the record, known as initialization syntax,

and separate each pair of columns and values with commas. A hard coded record is known as a

record literal. The identifier for the column name does not need quotes or the # sign. The

column name is followed by an equal sign and then the value. An example of a hard coded

record with two columns and two values is shown here:

=[Boom Product = "Quad", Sales = 43].

Records are often used inside functions to allow you yo enter argumenst, as shown below in the

Csv.Document function:

Ch06-03: A record with parameters can be specified in the columns argument.

Table value

Page 23 of 47

A Table value has column names in the first row and records of values in subsequent rows. As

with any data related tool, tables are the heart of any data analysis process because they hold

all the data that we analyze. Tables can hold any of the 15 M Code Values, including tables. You

can think of tables as being made up of record values in rows and lists values in the columns.

However, technically a row in a table is not a record value until you extract it from the table, and

a column in a table is not a list value until you extract it from the table. Extracting rows and

columns from tables is a very common task and we will learn about later when we learn M Code

lookup.

The table intrinsic function can have as many columns or records as you would like. In the first

argument of the table intrinsic function, you list the column names and in the second argument

you list the records. There are two different syntactical structures for the table intrinsic function.

Here is an example of both:

=#table(ColumnNames , Records)

Table with data types:

= #table(

type table [Boom Product = text, Sales = number],

{{"Quad",43}, {"Aspen",35}})

Table with no data types:

=#table(

{"Boom Product", "Sales"},

{{"Quad",43},{"Aspen",35}})

Binary value

M Code binary values represent a sequence of bytes, such as Excel files, text files, xml files,

images, audio files, and other data sources. The value type is important to have in M Code so

that we can accomplish tasks such as importing multiple Excel or text files and extracting the

data from within those files. You will learn how to work with binary values in chapters 6 and 7.

As a preview of those chapters, Figure-29 shows the Content column that contains binary values

in each row and a binary data type. This column contains Excel files. In row #2 the Excel file is

named GrassValley.xlsx.

Figure-29: The binary value type allows you to import Excel files that contain data.

Page 24 of 47

M Code Lookup Formulas

Now that we have studied the fundamental building blocks: expressions, let expressions,

queries, built-in functions, custom functions, M Code values and data types, the last building

block we need to study is M Code lookup. M Code lookup allows you to lookup a value, a row as

a record, a column as a list or one or more columns as a table.

Note: From relational algebra, database theory and the M Code Specifications Guide:

Projection (, pi)= pick a column (attribute) from a table (relation)

Selection (, sigma) = select a row (tuple) from a table (relation)

For example, common lookups are:

• Two-way lookup to get a table from an SQL database or an Excel file.

• Two-way lookup to get a sales discount rate.

• Column lookup to get a list of values for an aggregate calculation.

• Row lookup to get record with the attributes for a file.

We will see the above examples and many more throughout the rest of the book.

The two types of lookup that we will learn about are exact match and approximate match

lookup. The definitions are listed in the next two paragraphs.

Exact match lookup involves taking a lookup value and searching for an exact match in a

match column that contains a unique list, and when a match is made a value is retrieved from

the same corresponding position in the a return column. For example, the lookup value “Quad”

would match “Quad”, but not with “Quad “ (extra spaces at the end).

Approximate match lookup or Exact match or next smaller lookup involves taking a

lookup value and searching for an exact match or next smaller value in a match column, and

when a match is made a value is retrieved from the same corresponding position in the return

column. For example, in a match column of {0, 500, 1000, 2500} the lookup value 774 would

match 500 because there is no exact match, and the next smaller value is 500.

In M Code, there is a built-in method to perform the common task of exact match lookup, but no

built-in method for approximate match lookup. Both M Code and DAX lack a built-in method for

approximate match lookup. However, in the Excel worksheet there are many functions that can

do both. Later in this chapter I will teach you how to build a custom function for approximate

match lookup for tasks such as looking up a tax or commission rate.

Finally, because M Code is base zero, which means that row one is 0, row two is 1, row three is

2 and so on, we must be aware of this when creating lookup formulas. Figure-30 illustrates base

zero and base one.

Figure-30: In M Code row one in tables and lists is represented by the number zero (0).

Page 25 of 47

For those of you who know how to perform two-way exact match lookup with the worksheet

INDEX function, you will understand M Code lookup easily because the two methods are very

similar. Both methods start with a table that has rows and columns, then you provide a row

number and a column number, and the intersecting value is retrieved. Figure-31 shows the two-

way exact match lookup formulas for both M Code and for the INDEX function. For example, as

shown in Figure-32, if you start with the Product table and you need to lookup the retail price for

the Aspen product, you start by finding the Aspen product in the Product column, this is row #2,

then you find the Retail Price column, this is column #3, and the intersecting price of 26.95 is

returned. As shown in Figure-31, for the INDEX function you enter the table name, the row

number, and the column number into the function, and it retrieves the intersecting price of

26.95. Still looking at Figure-31, in M Code, you start with a table, then you put the row number

in curly brackets, called the row positional index operator or row index operator, and then

you put the column name in square brackets, called the field access operator, and it retrieves

the intersecting price of 26.95.

Figure-31: M Code lookup and the INDEX function work similarly.

Figure-32: Product lookup table.

Page 26 of 47

There are two types of M Code exact match lookup: row index lookup and key math lookup. The

lists below and Figure-33 present the rules for M Code exact match lookup.

Rules for row index lookup

• Lookup Syntax: Table { Row Index Number }[Field Name]

• Row index lookup performs an exact match two-way lookup based on a hard coded row

number in the positional index operator, and a column name in the field access

operator, to retrieve a value from a table at the intersection of the row number and

designated column name. The hard coded row number does not change when the sort

or content of the column changes. The lookup is static because the row number does

not change when the data changes.

• Examples of row index lookup:

o Source{0}[Content] gets the first value from the Source table Content column.

o Source{0} gets the first row from the Source table as a record value.

o Source[Content] gets the Content column from the Source table as a list value.

o Source[[Content]] gets the Content column from the Source table as a table.

o {43,86}{0} gets the first item from the list, 43.

o {43,86}{2} yields an error because there is no third item.

o {43,86}{2}? delivers a null instead of an error (optional operator: ?).

o {43,86}{2}?? 5 delivers 5, instead of an error. (coalesce operator: ??).

Rules for key match lookup:

• Lookup Syntax: Table{[Field Name = LookupValue]}[Field Name]

• Key match lookup performs an exact match two-way lookup based on an equality logical

test between a lookup value and a match column (key column) that contains a unique

list of values. The equality test must be inside square brackets, called the lookup

operator. The lookup operator must be inside the positional index operator. The logical

test will dynamically determine the row position when the column is sorted or the data

changes. The field name in the field access operator determines the column position.

Then the intersecting value is retrieved from the table.

• If there are duplicate values in the key column, an error is produced.

• Examples of key match lookup:

o Source{[File=”DD”]}[Content] gets the value from the Source table Content

column that corresponds to the row position of DD in the File column.

o Source{[File=”DD”,Col=”G”]}[Content] gets the value from the Source table

Content column that corresponds to the row position of DD in the File column and

G in the Col column.

o Source{[File=”DD”]} gets the record from the Source table that corresponds to

the row position of DD in the File column.

Page 27 of 47

o Source{[POP=”Z”]} yields an error because there was more than one Z in the

POP column. The error reads: “The key matched more than one row in the table”.

o Source{[File=”YY”]} yields an error because there were no YY value in File

column. The error reads: “The key didn't match any rows in the table”.

Figure-33: Two types of exact match lookup.

Figure-34 shows the syntax for looking up a row as a record, a column as a list, a column, and

one or more columns.

Figure-34: Common lookup tasks.

Here are the types of lookup we will learn about in the upcoming examples:

• Row index lookup to retrieve a record.

• Row index two-way lookup to retrieve a value.

• Key match lookup to retrieve a record.

• Key match two-way lookup to retrieve a value.

Page 28 of 47

• Key match lookup yields error when there are duplicates in column.

• Key match lookup yields error when there is no match.

• Lookup a column to return a list.

• Lookup column to return a one column table.

• Drill down lookup when there is no primary key.

• Drill down lookup when there is primary key.

• Check for primary key.

• Add a primary key to a table.

Drill Down, lookup formulas and primary keys

Drill Down is a user interface command that allows you to lookup a value from a table, list or

record. When you use drill down on a particular cell or column, the M Code value is extracted as

a new step in the query. The drill down scenarios are as follows:

• When you use Drill Down on a cell in a table with no primary key, row index lookup is

used to extract the value.

• When you use Drill Down on a cell in a table with a primary key, key match lookup is

used to extract the value.

• Primary keys are created when you use functions like Excel.CurrentWorkbook,

Excel.Workbook, Sql.Database and other functions. A primary key is also created when

you use the Remove Duplicate feature.

• When you use Drill Down on a column in a table, column lookup is used to exact a list

from the column.

• When you use Drill Down on a cell in a record, a column lookup formula is used to exact

the value from the record.

• When you use Drill Down on a value in a list, row index lookup is used to extract a value

from the list.

What if we have a table and we are not sure whether it has a primary key? Is there a way to

check? The crazy thing is that Microsoft did not put a button or command in the user interface to

determine if a table has a primary key. The only way to check if there is a primary key in a table

is to use the Table.Keys function. This function takes a table as its only argument, and reports

if there is primary key. If there is a primary key, it reports the column name/s that make up the

primary key. If there is no primary key it returns an empty list.

Lastly, if you want to add a primary key to a table, you can use the Table.AddKey function.

The arguments for this Table.AddKey function are listed here:

Table.AddKey(

table as table,

key column/columns as list,

isPrimary as logical) as table

Page 29 of 47

Join operations used by Merge feature

When making data transformations, the join operation to merge tables is a common. In this

section I will cover the concepts of the join operation and then we will move on to a few

examples. A join operation connects two tables based on a primary key column and a foreign

key column to merge the two tables into a new table. The primary key table has a primary key

column with a unique list of values, and the rest of the columns contain attributes for each value

in the primary key. As shown in Figure-37, an example of a primary key table is the product

table, where product ID is the primary key, and the attribute columns are product name, cost

and price. In the same figure below, an example of a foreign key table is the sales transaction

table, where the product ID column is the foreign key, and the remaining columns are details

about the transactions such as date of sale, customer ID and units sold. As shown in Figure-38,

Venn diagrams illustrate the six types of common joins used in data analysis to determine the

structure of the merged table. Figure-37 illustrates a left outer join, where all records from the

left are joined with only matching Price column records from the right to create a new merged

table. The Venn diagram illustrates this by highlighting the full circle of the left, but only the

intersection of the left and right circles on the right. Only product prices that have product IDs

on the left are in the merged table. The one Sunshine record on the right has no matching

product ID on the left, so the price for that product is not in the merged table.

Figure-37: Left outer join to create a sales transaction table with a price column.

Figure-38: Six common types of joins.

Page 30 of 47

Figure-39 illustrates a left anti join, where only records from the left that are not in the right

are used to create the new merged table. The Venn diagram illustrates this by highlighting the

left table without the overlap (names that are in both). Because the names Sioux Noline, Chantel

Xo and Ty Mims are in both tables, those names do not appear in the merged table.

As shown in Figure-38, the right outer join and right anti join are mirror images of the left

out join and left anti join, respectively. Because it is easy to switch tables from right to left and

left to right, most of the time people orientate the tables accordingly and just perform left outer

and left anti joins.

Figure-39: Left anti join to create a table with only people from event 1.

Figure-40 illustrates an inner join, where only records that are in both tables are used to create

the new merged table. The Venn diagram illustrates this by highlighting only the overlap

between the left and right circles. The overlap represents an AND logical where you get a

matching name in the left table, TRUE, and a matching name in the right table, TRUE. Because

the names Kim Quin, Dino Gibbs and Ben Hibs are in the left table only and the names Cindy

Warm, Mo Smith and Kay Moth are in the right table only, none of those names appear in the

final table.

Figure-40: Inner join to create a table with people who went to both events.

In my data analysis experience, the left outer join is the most common join in data

transformations. This is because it is common to have to pull data from lookup tables (also

known as dimension or attribute tables) into the table with the data to be summarized, often

called a fact table. The left outer join is similar to the worksheet functions, XLOOKUP and

VLOOKUP, and to relationships in the Power Pivot and Power BI Data Model (Semantic Model).

Whether you are working in M Code, the worksheet or the Data Model, the left outer join is the

most common type of join. However, I use the left anti and inner joins regularly in data

transformations also.

Page 31 of 47

Custom function value

Perhaps the most exciting and useful M Code value is the function value, often called a custom

function. The function value or custom function allows you to create a function that defines

variables and the mapping for those variables to deliver an M Code value. In Excel, the parallel

function to create function values is the LAMBDA function. In M Code, function values are

particularly helpful for data transformations that you must repeat often. The function-expression

syntax rules for creating a custom function are listed below and shown in Figure-41:

• Variables names are separated by commas and housed in parentheses. The rules for

naming variables are the same as the rules for naming identifiers: no keywords, no

spaces and if you do have spaces use the # symbol and quotes. The variable names

show up as function arguments when you use the custom function.

• The go to operator comes after the defined variables and indicates that everything after

the go to operator is the mapping of the variables, or formula to execute. The go to

operator is created with an equal sign and a greater than symbol, like: =>.

• The mapping of the variables comes after the go to operator. The mapping can be any M

Code that delivers an M Code value. The mapping almost always uses the defined

variables, but it does not have to use the variables.

• After the variable name, you can define value types for variables by typing the keyword

as, followed by the identifier of the value type. Value types are optional.

• After the close parentheses for the variable names and before the go to operator, you can

define value types for the output of the function by typing the keyword as, followed by

the identifier of the value type. Value types are optional.

• As with all M Code, you can add non-executable comments to your custom function by

beginning a single-line comment with two forward slashes, like //, or start your multi-

line (multiple hard returns) comments with /* and end with */.

Figure-41: You can create your own custom functions.

Page 32 of 47

Custom functions can be created in any M Code, but are most often created in three places:

• A new query that uses the let expression to deliver a reusable custom function value,

called a re-usable function query, or just function query. The function query is

available throughout the Power Query Editor in the file or Dataflow area.

• A function argument that requires a function. The custom function is available only in the

function argument.

• As an intermediate step in a let expression, called a function query step. The function

query step is available throughout the let expression, but the let expression itself does

not necessarily have to deliver a custom function value.

Each and underscore to create custom functions

When we used the Table.AddColumn function, we saw that in a function argument that requires

a function, like the third argument of the Table.AddColumn function, the each keyword allows a

formula to calculate in each row of a table. The each keyword also allows formulas to calculate in

each row of a list value. In a function argument that requires a function, if a formula only

accesses the columns from the table that is iterated, you do not need to go through the extra

effort to define variables and use the go to operator. All you need to do is type each, followed by

a formula that pulls values from each row using the field access operator (square brackets).

When you use the keyword each the formula becomes a custom function. In addition, as we

have seen so far, the underscore character (_) works with the each keyword to extract a row as

a record or a grouped set of records as a table in each row of a table, or to extract an item from

each row in a list. Together, the each keyword and the underscore character are the syntax that

Microsoft created to make it easy to create custom functions. Here is a bullet list of my full

definition of the keyword each and the underscore character (_):

• The each keyword is syntactical shorthand for defining an unnamed custom function

taking a single untyped variable named underscore (_).

• You can use the each shorthand anywhere a function can be declared.

• The each keyword is often used to pass a custom function to an argument in other

functions, such as Table.AddColumn, Table.SelectRows, or List.Transform.

• The each keyword can be thought of as "allowing you to make a calculation in each row of

a table or list”.

• The underscore character _ can be thought of as extracting everything from a row in a

table or list.

• These are examples of equivalent custom functions that are invoked in a custom column

that each use a different syntax:

each [Years] * [PeriodsPerYear]

each _[Years] * _[PeriodsPerYear]

(_) => _[Years] * _[PeriodsPerYear]

(Row) => Row[Years] * Row[PeriodsPerYear]

Page 33 of 47

• To extract a row as a record in each row of a table, or extract the items in each row of a

list, these are equivalent custom functions that are invoked in a custom column that

each use a different syntax:

each _

(_) => _

(Row) => Row

The following bullet communicates the most succinct definition of the each keyword and

underscore character.

• The each keyword is syntactical shorthand for defining an unnamed custom function

taking a single untyped variable named underscore (_).

To better understand this definition, let’s start by considering this custom function:

each [Years] * [PeriodsPerYear]

The “unnamed custom function” part of the definition means that we did not use an identifier

when we wrote the formula. We just used the each keyword and the formula. Because there is

no identifier, we can’t refer to this custom function anywhere else. This custom function only

works in this column.

The “taking a single untyped variable named underscore _”, part of the definition means that we

did not have to type an underscore as a preface to each column reference (column name in the

field access operator). However, you could type the underscore character as a preface to each

column reference, as shown in the below formula, and the formula works. If you use the each

keyword for a formula that uses column references, you almost never type the underscore

character. That is why the definition uses the adjective “untyped”.

As shown below, you could create a custom function with the underscore and field access

operators. What is happening with the formula is as follows: first the underscore character

extracts the full row, and then the field access operator extracts the value from the specified

column for the given record.

each _[Years] * _[PeriodsPerYear]

As shown below, you could create a custom function with the single defined variable underscore

(_) and the go to operator. This syntactic structure is exactly what the each keyword represents:

a custom function taking a single variable named underscore _ .

(_) => _[Years] * _[PeriodsPerYear]

As shown below, you don’t have to use underscore as the variable to represent the row, you can

use any variable name that you would like. In the below formula, by choosing the variable name

“Row”, I am explicitly naming the variable for what it does: extract the row as a record in each

row of the table.

(Row) => Row[Years] * Row[PeriodsPerYear]

Page 34 of 47

If you wanted to extract a row as a record in each row of a table, or extract the items in each

row of a list, these are equivalent custom functions that each use a different syntax:

each _

(_) => _

(Row) => Row

If you would like to create the formulas as shown in the above bullets, you can select the query

with the name CustomFunctionQ, and create each one in a new custom column. You will have to

edit the formulas in the Formula Bar after you click OK in the Custom Column dialog box to get

them to match. Figure-42 shows an example of how I did them.

Figure-42: Seven formulas to help illustrate how the each and underscore _ work.

If expression

The if expression is used when you want the expression to deliver one of two items based on a

logical test. The syntax for the if expression is as follows:

if logical_test then expression_if_true else expression_if_false

Table.AddColumn function

When you create a formula in a Custom Column dialog box, behind the scenes the formula is

placed into the Table.AddColumn function. The Table.AddColumn function adds a column to a

table by running a formula in each row. The arguments for the function are as follows:

Table.AddColumn(

table as table,

newColumnName as text,

columnGenerator as function,

optional columnType as nullable type) as table

Page 35 of 47

Excel.CurrentWorkbook function

The Excel.CurrentWorkbook() is an argumentless function that extracts objects from the

current Excel file (file where the function is being used) and delivers a table of objects and

object names to the Power Query Editor The returned table has two columns: one for the object

and for the name of the object. The primary key of the returned table is the Name column. The

objects it can return are as follows:

• Excel Tables.

• User created defined names (LAMBDA and Formula names are not imported).

• Automatically created defined names when you use these features:

o Print range.

o Advanced Filter criteria and extract ranges.

o Filter feature.

o Dynamic arrays.

This function does not import worksheets into the Power Query Editor. The Excel.Workbook can

import worksheets, the Excel.CurrentWorkbook function cannot. In addition, if you have dynamic

spilled arrays in your Excel file and you have never manually imported them into the Power

Query Editor, the Excel.CurrentWorkbook function will not detect or import the dynamic arrays.

However, when you manually import a dynamic array into the Power Query Editor, an automatic

defined name is created. It is only after the automatic defined name is created, that the

Excel.CurrentWorkbook can “see” the dynamic array and therefore import it as an object from

the current Excel file into the Power Query Editor.

Note: The Excel.Workbook function imports worksheets, but not dynamic arrays. The

Excel.CurrentWorkbook function imports dynamic arrays, but not worksheets.

Finally, if you are using the Excel.CurrentWorkbook function to import multiple Excel Tables,

append them into a single table, and then load the table back to the worksheet, you must

prevent recursion from occurring. Recursion is when a function can call itself and in the case of

the Excel.CurrentWorkbook function, because it delivers an Excel Table to the worksheet, and

the function is programmed to import all Excel Tables, when you refresh the query, the function

imports the original Tables plus the query output Table (importing itself), thereby calling itself

and doubling the size of the table. There are a few simple solutions. The first solution is to add a

single line of M Code that filters out the name of the query. In this way, when you refresh, the

query output table is not allowed to be part of the final output. Another solution is to not load

the append table to the worksheet, but instead load it to a PivotTable cache.

Page 36 of 47

Csv.Document function

The Csv.Document function converts a text file that contains a specified delimiter into a table.

By default, the function assumes a comma delimiter that is most often used in a csv file. The

function extracts the data from the text file and converts it to a table. The arguments for the

function are shown here:

Csv.Document(

source as any,

optional columns as any,

optional delimiter as any,

optional extraValues as nullable number,

optional encoding as nullable number) as table

The source argument can accept text files such as csv or txt text files. The columns argument

allows you to specify which columns to import and will accept null (all columns), the number of

columns, a list of column names, a table type, or an options record. By default, all columns are

imported. This argument can be helpful if you want to specify, not all columns, but just certain

ones: this allows you to avoid later query steps to remove columns. If you enter 2 and there are

four columns, the two columns from the left are imported. You can also include a list of the

names of columns to import, which allows you to pick and choose which columns you want to

import, regardless of the order of the columns. If the number of columns in the source Csv file

might change, omit the columns argument, or use a null value to skip it. This will allow the

Csv.Document to infer the number of columns each time the file is refreshed. We will look at the

record and table options for the columns argument later. The delimiter argument can accept

almost any set of characters, but most csv and txt files use a comma or a tab character as the

delimiter. In the delimiter argument, you can enter a single delimiter, a list of delimiters or a list

of fixed widths. Special delimiter characters require specific M Code such as:

• Carriage-return = “#(cr)”

• Linefeed = “#(lf)”

• Tab = “#(tab)”

• Consecutive white spaces = “”

The extraValues argument works with the Columns argument to determine what happens to

columns that are skipped. Here are the options that you can enter into this argument:

• ExtraValues.List = 0 = If the splitter function returns more columns than the table

expects, they should be collected into a list.

• ExtraValues.Error = 1 = If the splitter function returns more columns than the table

expects, an error should be raised. This is the default.

• ExtraValues.Ignore = 2 = If the splitter function returns more columns than the table

expects, they should be ignored.

If you remove columns using the columns arguments, you probably want to use

ExtraValues.Ignore, or the equivalent 2, so that you don’t get an error.

The encoding argument specifies the text encoding type. For example, when you use Save As

to save a csv file, you can see in the coding for some file types in the Save as type text box. For

Page 37 of 47

example the option I use is: CSV UTF-8 (Comma delimited) (*csv) informs me that the coding is

UTF-8. Here is a list of some of the many encodings:

• 65000, UTF-7, Unicode (UTF-7)

• 65001, UTF-8, Unicode (UTF-8). This is the default.

• 10001, X-Mac-Japanese, Japanese (Mac)

• 1252, Windows-1252, ANSI Latin 1; Western European (Windows)

• 865, IBM865, OEM Nordic; Nordic (DOS)

• Full list here: https://learn.microsoft.com/en-us/windows/win32/intl/code-page-

identifiers?redirectedfrom=MSDN

Figure-43: A record with parameters can be specified in the columns argument.

As shown in Figure-43 above, you can provide a record in the columns argument that defines

the five parameters: Delimiter, Columns, Encoding, QuoteStyle and CsvStyle. You can provide

one to five parameters in a record (the above picture uses four of the parameters). If you use

the user interface to import text files, this record is automatically generated. The description of

each of the five parameters is listed below:

• Delimiter. You can set a delimiter in record like: Delimiter=”#(tab)” for tab.

• Columns. You can set the number of columns to import like: Columns=3. If you

anticipate that the number of columns may change, omit the columns parameter to

accommodate a varying number of columns.

• Encoding. You can set the text encoding type, like: Encoding=65001.

• QuoteStyle. You can specify how quoted line breaks are handled with one of two options:

o QuoteStyle.None or 0 means quoted line breaks are ignored. This is the default.

An example is shown in Figure-44.

o QuoteStyle.Csv = 1 = means that Apply all line breaks. An example is shown in

Figure Ch06-04.

Figure-44: The QuoteStyle argument defines how line breaks are interpreted.

https://learn.microsoft.com/en-us/windows/win32/intl/code-page-identifiers?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/windows/win32/intl/code-page-identifiers?redirectedfrom=MSDN

Page 38 of 47

• CsvStyle. You can specify how quotes are handled with one of two options:

o CsvStyle.QuoteAfterDelimiter or 0 means that quotes in a field are only

significant immediately following the delimiter. This is the default. If you import a

record with 43 and “Rad”, Figure-45 shows that if you use this option, that the

quotes around the word Rad are included in column 2.

o CsvStyle.QuoteAlways or 1 means that quotes in a field are always significant,

regardless of where they appear. If you import a record with 43 and “Rad”,

Figure-46 shows that if you use this option, that the quotes around the word Rad

are not included in column 2.

Figure-45: The option CsvStyle.QuoteAfterDelimiter allows you to import quotes.

Figure-46: CsvStyle.QuoteAlways allows you to ignore quotes.

As shown in Figure-47, you can provide a table in the columns argument that defines the column

names and data types for each column. However, I have not found a good use for this because

although data types are defined at the top of each column, the data is still all text. In Figure-47,

the sales numbers are aligned left and are text values. If you try to add the numbers, you will

get an error.

Figure-47: A table in the columns argument of Csv.Document defines column names.

Page 39 of 47

File.Contents function

The File.Contents function gets the contents of the file and is used inside many data connector

functions, such as: Csv.Document, Excel.Workbook, Json.Document and Xml.Tables. Inside the

File.Contents functions is the hard coded file path that is unique to your computer and is called

an on-premises file path, as shown in Figure-48 below.

Figure-48: A record with parameters is created in the columns argument.

Page 40 of 47

On-premises file and folder paths

As shown back in Figure-48, in the Source query step, in the first argument of the File.Content

function, the file path for the SalesData.csv file is hard coded into the formula. When you hard

coded a file path into a query, it means that if you move that source data file to a different

location, or you e-mail the file that contains the query to a colleague, the connection to the

source data is broken and you will receive the following error: Data Source Not Found. When

you hard code a file or folder path into a query, the path is called an on-premises path. As you

can imagine, on-premises paths cause a lot of trouble if you are sharing files or moving files

around. An on-line data source, like an SQL server database, Dataflow or Power BI do not have

this problem because the data is stored online in a location that does not move. Multiple

credentialed people can have access to “a single source of truth” where there are no on-

premises paths and no conflicts with multiple versions of the same file. Nevertheless, not all data

is stored online, and on-premises paths are common. The good news is that if you know where

the source data file is, it is easy to redirect the query to the new location. There are at least

three ways to change the on-premises path:

• In the Source step for almost any query, you can edit the on-premises path in the formula

bar.

• As shown back in Figure-48, click the gear icon in the Source query step to open the

source data dialog box. Many data sources such as Csv, Excel, Sql Databases, Web sites

and more allow you to use the gear icon in the source query step to edit the connection

details. As shown in Figure-49, the source data dialog box for the SalesDataCsv Source

query step allows you to edit the parameters for the csv file import.

• If you have used the same file or folder in multiple queries, it is most efficient to edit the

path universally in the Data Source Settings dialog box. There are multiple ways to

open this dialog box in Excel and Power BI. If you are in the Power Query Editor:

o In the Excel Power Query Editor, in the Home tab, Data Sources group, click the

Data source settings button.

o In the Power BI Desktop Power Query Editor, in the Home tab, Data source

group, click the Transform data dropdown and then click Data source settings.

o In the Dataflow Power Query Editor, in the Home tab, Data sources group, click

the Manage connections button.

Figure-49: The source data dialog box for the Sales.csv file.

Page 41 of 47

Data source settings

Figures-50 and Figures-51 show the Data source settings dialog box that is the same in both

Excel and Power BI Desktop. The dialog box in Dataflow is different because it only contains

online sources. Figures-50 shows Data sources in current workbook (or Power BI file) and

Figures-51 shows global data sources that have been used in other files. The Change Source

button allows you to change the path for the selected the on-premises file. The Edit Permissions

and Clear Permissions allow you to edit and clear credentials for online data sources or other

sources that require credentials. When you use the same file in many queries, it is convenient to

have one universal location to edit and change the file or folder path. In addition, if your

credentials for an online source have changed, or you want to clear a permission, these dialog

boxes are convenient. Next, we want to create a dynamic on-premises folder or file path that will

automatically update when a file is moved.

Figure-50: Data source settings for sources in current workbook (or Power BI file).

Figures-51: Data source settings Global permissions.

Page 42 of 47

Approximate match lookup

Although M Code has built-in methods to create exact match lookup formulas, there is no built-in

method for approximate match lookup. However, with our knowledge of how to build custom

functions, we can build a function to complete an approximate match lookup. As we first learned

at the beginning of this chapter, the definition of an approximate match lookup is as follows:

Figure Ch04-52 shows the lookup table that we will use for our examples.

Figure-52: The disDiscountAprox query is the sales discount lookup table.

The categories for the disDiscountAprox query lookup table are shown in Figure-53.

Figure-53: Categories for the sales discount lookup table.

Table.Buffer function

The Table.Buffer function takes a table and stores it in memory. Then each time the table is

called, it does have to go back to the query to get the table, instead, it just uses the table that is

stored in memory. This helps to reduce the time that it takes the formula to namek the

calculation.

Approximate Match Discount Lookup Formulas used in video show in next 3 figures:

Figure-54: Uses the let expression to define LookupColumn

Page 43 of 47

Figure-55: You can hard code lookup table into function and avoid buffering the table

Figure-56: In the comments, Geert Delmulle said we don’t need the let expression!

Page 44 of 47

Table.Group function

The Table.Group function has the following five arguments:

Table.Group(

table as table,

key as any,

aggregatedColumns as list,

optional groupKind as nullable number,

optional comparer as nullable function) as table

The table argument contains the table where the group by calculation are made.

The key argument can contain a single text column name or a list of column names for the

columns that determine the unique set of row criteria.

The aggregatedColumns argument contains a list within a list, where each sub-list details the

three components for each aggregate calculation: column name, function and data type.

The optional groupKind argument allows you to choose the type of grouping as shown below in

Figure-57:

Figure-57 Options for the groupKind argument in Table.Group.

The optional comparer argument allows you to test equality and determine inclusion for the

grouping action.

Figure-58 and 59 shows the baseball example we did in the video:

Figure-58: A’s Baseball Team wins and losses data.

Page 45 of 47

Figure-59 GroupKind.Local.

Table.Group fifth argument: Comparer

The comparer argument in the Table.Group function allows you to test equality and determine

grouping categories with the comparer functions as shown in Figure Ch05-60.

Figure Ch05-60: Comparer functions used in Table.Group, List.Distinct, and other functions.

Comparer functions and where to use them

Comparer functions allow you to test equality to determine order, inclusion, grouping and other

tasks. As shown in the above figure, there are four built-in functions plus the ability to build your

own custom function for comparing. You can use these functions in the arguments of other

functions such as List.Sort, List.Distinct and Table.Group.

Page 46 of 47

Microsoft’s documentation states that the custom function option require two arguments, one

for the seed value (value to start the iteration over a list of values, and one for the row values

(list of values to iterate). The possible values for the custom function can have a pattern like

these patterns:

If x > y then 1 else if x < y then -1 else 0

If x = y then 1 else 0

If x <> y then 1 else 0

If x > y then 1 else 0

If x < y then 1 else 0

If you build a custom function that delivers logical values, you must convert the logical values to

numbers using functions such as Number.From.

An example of the comparer functions is shown in Figure-61 and 62:

Figure-61: This is the data set that we started with and the cases of letters need to be ignored.

Figure-62: This groups and ignores case

Page 47 of 47

An example of using a custom function in the fifth argumnet is shown in Figure 63 and 64:

Figure-63: Records in a single column.

Figure-64: Custom Function in fifth argument of Table.Group.

