Table of Contents
Comparative Operators 2
Logical Tests 2
AND Logical Test (AND Criteria) 2
AND function 3
SUMIFS, COUNTIFS, AVERAGEIFS functions with AND Criteria 3
BETWEEN Logical Test 4
D Functions (Database functions) 5
D Functions: AND Criteria is listed in same row 6
D Functions: OR Criteria is listed in different rows 6
Math Operators and Logical Tests (Boolean Calculations) 7
Standard Deviation calculation with AND Criteria: STDEV.S \& IF Functions Array Formula. 8
OR Logical Test (OR Criteria) 9
OR function 9
OR Criteria looking at one column using SUMIFS and COUNTIFS 10
Average calculation with OR Criteria: AVERAGE \& Array Formula (for 1 or more columns) 10
Credit Analysis for Accounts Receivable Department with AND and OR Criteria 12
IF Function 13
IS functions 13
Conditional Calculations: PivotTable or Formulas? 14
Defined Name Scope 15
Cumulative List of Keyboards Throughout Class: 16

$=$	Equal: are two things equal?
$<>$	Not: are two things not equal? Type less than symbol, then greater than symbol.
$>$	Greater than: is the thing on the left greater than the thing on the right?
$>=$	Greater than or equal to: is thing on the left greater than or equal to thing on the right?
$<$	Less than: is the thing on the left less than the thing on the right?
$<=$	Less than or equal to: is the thing on the left less than or equal to the thing on the right?

Logical Tests

1) A Logical Test is a test that evaluates to TRUE or FALSE.
2) Logical Tests have only two possible answers: TRUE or FALSE.
3) Examples of Logical Tests:

- Single Logical Tests:

1. $12=12$, this evaluates to TRUE
2. "Dog"="Dog", this evaluates to TRUE
3. $500>=500$, this evaluates to TRUE
4. $11=12$, this evaluates to FALSE
5. "Cat"="Dog", this evaluates to FALSE
6. 499.99>=500, this evaluates to FALSE

- Array Formula Logical Tests:

1. A16:A22=E16, this evaluates to \{TRUE;TRUE;FALSE;FALSE;TRUE;TRUE;FALSE\}
2. (A16:A22=E16)+(B16:B22=F16) \rightarrow \{TRUE;TRUE;FALSE;FALSE;TRUE;TRUE;FALSE\}+\{TRUE;FALSE;FALSE;TRUE;FALSE;FALSE;FAL $S E\} \rightarrow\{2 ; 1 ; 0 ; 1 ; 1 ; 1 ; 0\}$ (Plus means OR Logical Test)
3. (A16:A22=E16)*(B16:B22=F16) \rightarrow \{TRUE;TRUE;FALSE;FALSE;TRUE;TRUE;FALSE\}*\{TRUE;FALSE;FALSE;TRUE;FALSE;FALSE;FAL SE\} $\rightarrow\{1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0\}$ (Multiplication means AND Logical Test)

AND Logical Test (AND Criteria)

1) AND Logical Test (using AND Criteria):

- The Goal of an AND Logical Test is to run two or more logical tests and see if ALL logical tests evaluate to TRUE.
- Think of: "If you take out the garbage AND clean the table, you get desert". Only if you get two TRUEs (took out garbage AND cleaned the table) do you get desert.
- For an AND Logical Test with two tests we can get these possible answers:

1. TRUE, FALSE
2. FALSE, TRUE
3. FALSE, FALSE
4. TRUE, TRUE.

- Only \#4 example (TRUE, TRUE) will yield a TRUE from the AND Logical Test.
- For an AND Logical Test to evaluate to TRUE, you must get "All Are TRUE".
- Functions that can perform AND Logical Tests:

1. AND function
2. SUMIFS, COUNTIFS, AVERAGEIFS and other similar functions (default behavior when you use more than one criteria_range and more than on criteria)
3. D Functions: AND Criteria goes on same row.
4. IF function
i. You can use the AND function in the logical_test argument to deliver a single TRUE or FALSE.
ii. If you are creating array formulas:
5. You can nest multiple IF functions
or
6. Multiply Arrays with TRUEs and FALSEs (Multiplication means AND)

AND function

1) Performs AND Logical Test.
2) Enter 2 or more logical tests into AND function separated by commas.

- AND interprets:

1. Any non-zero number and TRUE as TRUE.
2. Zero and FALSE as FALSE.
3) AND function delivers a TRUE only when all logical tests evaluate to TRUE.

- Example:

4	B	C	D	E	F	G	H	1	J	K	L	M	N	
1	Region	SalesRep	Customer	Product	COGS	Sales	AND Function		AND Logical Test (AND Criteria) $=$ All Must be TRUE					
2	West	Gigi	Amazon	AIM Item	3,643	6,279	FALSE	H2: $=$ AND(B2=\$J\$9,C2=\$K\$9,E2=\$1\$9)						
3	South	Gigi	Fred Myer	DAB Item	8,815	9,428	TRUE	$\mathrm{H} 3:=\mathrm{AND}(\mathrm{B3}=\$ \mathrm{~J} \$ 9, \mathrm{C} 3=\$ \mathrm{~K} \$ 9, \mathrm{E} 3=\$ 1 \$ 9)$	AND Function:					
4	South	Mo	Peet's	XOL Item	3,190	7,417	FALSE							
5	South	Pham	HD	RAD Item	3,636	6,270	FALSE							
6	South	Gigi	HD	DAB Item	5,247	5,610	TRUE		AND Criteria:					
7	West	Gigi	McLendon's	RAD Item	2,984	5,424	FALSE		Question is: Is the Region South AND is the SalesRep Gigi AND is the Product DAB Item?					
8	South	Shelia	Fred Myer	XOL Item	6,386	6,830	FALSE		Region	SalesRep	Product			
9	West	Mo	HD	RAD Item	1,175	2,611	FALSE		South	Gigi	DAB Item			

SUMIFS, COUNTIFS, AVERAGEIFS functions with AND Criteria

1) If we enter more than one criteria_range argument and more than one criteria argument into SUMIFS, COUNTIFS or AVERAGEIFS we are performing an AND Logical Test with AND Criteria.
2) Example of AND Logical Test with AND Criteria:

- Each of the functions below have 3 ranges in criteria_range argument (Region, SalesRep, Product) and 3 criteria in criteria argument (South, Gigi, DAB Item).
- Only when a record is found with Region = South AND SalesRep = Gigi AND Product = DAB Item, will the record be included in calculation.

4	B	C	D	E	F	G	H
1	Region	SalesRep	Customer	Product	COGS	Sales	AND Function
2	West	Gigi	Amazon	AIM Item	3,643	6,279	FALSE
3	South	Gigi	Fred Myer	DAB Item	8,815	9,428	TRUE
4	South	Mo	Peet's	XOL Item	3,190	7,417	FALSE
5	South	Pham	HD	RAD Item	3,636	6,270	FALSE
6	South	Gigi	HD	DAB Item	5,247	5,610	TRUE
7	West	Gigi	McLendon's	RAD Item	2,984	5,424	FALSE
8	South	Shelia	Fred Myer	XOL Item	6,386	6,830	FALSE
9	West	Mo	HD	RAD Item	1,175	2,611	FALSE
10	MidWest	Gigi	Costco	DAB Item	2,792	4,811	FALSE
11	South	Mo	OD	XOL Item	16	23	FALSE
12	North	Pham	Economist	DAB Item	7,222	8,206	FALSE
13	North	Pham	HD	AIM Item	4,648	8,450	FALSE
14	West	Mo	McLendon's	RAD Item	1,264	2,144	FALSE
15	MidWest	Gigi	Peet's	RAD Item	3,607	6,113	FALSE
16	minuth	nh	nantlo	nisaltam	ากィ	ว7ข	A

BETWEEN Logical Test

1) BETWEEN Logical Test is a form of AND Logical Test that has an upper and lower limit.
2) Only items that are between the upper and lower limit are included.
3) Example 1:

	K	L	M	N	0	P	Q	R	S	T
26	Question is: Is the Date for the Record Between the Upper and Lower Limit?									
27	Lower Limit	Upper Limit	Count Transactions Total Sales (\$)							
28	1/1/2013	1/31/2013	98	446,305		M28: =COUNTIFS(Date,">="\&K28,Date,"<="\&L28)				
29	2/1/2013	2/28/2013	66	289,246		N28: =SUMIFS(Sales,Date,">="\&K28,Date,"<="\&L28)				
30	3/1/2013	3/31/2013	101	477,170						
31	4/1/2013	4/30/2013	69	347,293						
32	5/1/2013	5/31/2013	96	492,240						
33	6/1/2013	6/30/2013	74	389,902						
34	7/1/2013	7/31/2013	74	395,934						
35	8/1/2013	8/31/2013	98	465,471						
36	9/1/2013	9/30/2013	83	438,576						
37	10/1/2013	10/31/2013	87	453,616						
38	11/1/2013	11/30/2013	73	384,776						
39	12/1/2013	12/31/2013	85	443,020						

4) Example 2:

- EOMONTH function calculates the end of a given month.
-1 gives end of last month
0 gives end of this month
1 gives end of next month

4	X	Y	Z	AA	$A B$	AC	AD	AE	AF
26	Question is: Please Count all the transactions for the month.								
27	Lower Limit	Count Transactions							
28	1/1/2013	98		Y28: =COUNTIFS(Date,">="\& ${ }^{\text {a }}$ (${ }^{\text {a }}$,Date,"<="\&EOMONTH(X28,0))					
29	2/1/2013	66		Y29: =COUNTIFS(Date,">="\& ${ }^{\text {(29,Date,"<="\&EOMONTH(X29,0)) }}$					
30	3/1/2013	101							
31	4/1/2013	69							
32	5/1/2013	96							
33	6/1/2013	74							
34	7/1/2013	74							
35	8/1/2013	98							
36	9/1/2013	83							
37	10/1/2013	87							
38	11/1/2013	73							
39	12/1/2013	85							

5) Example 3: Count Number Sales between an Upper and Lower Limit

4	K	L	M	N	\bigcirc	P	Q	R	s	Count Between Upper \& Lower Limit:	
41	Question is: Co	Ount Sales Amou	unts that were	ent	per and L	Limit.					
42	We have to be careful when the Upper and Lower of two categories are the same. Equal sign on only one.										
43	Lower Limit	Upper Limit	Count								
44	0	1000	182		M44: =CC	IFSS(Sales,	'>="\&K4	,ses,"<"		1)	COUNTIFS allows you
45	1000	2000	200		M45: = ${ }^{\text {c }}$	IFSS(Sale	">="\&K4	, les,"<"			control over comparative
46	2000	3000	208								Operators.
48	3000	4000	205							2)	FREQUENCY Array
48	4000	5000	212							2)	FREQUENCY Array
49	5000	6000	181								Function dictates the
50	6000	7000	196								Comparative Operators
52	8000	9000	216								and categories (See Array
53	9000	10000	193								Formulas Handout \#5).

D Functions (Database functions)

1) D functions (Database functions):

- Set of functions that make aggregate calculations using a Proper Data Set.
- The D Functions communicate with the Proper Data Set based on Field Names.
- D Functions are hard to copy to other cells. You can't create cross tabulated formula tables with D Functions because you can't copy the formula and have the criteria area adjust.

2) List of D Functions (thanks to CPearson.com)

- DAVERAGE returns the Average of the data specified by the criteria range - DCOUNT returns the Count (numeric values only) of data specified by the criteria range - DCOUNTA returns the CountA (all non-empty) of the data specified by the criteria range - DGET returns a single element of the data specified by the criteria range - DMAX returns the Maximum of the data specified by the criteria range
- DMIN
- DPRODUCT
- DSTDEV
- DSTDEVP
- DSUM
- DVAR
- DVARP
returns the Minimum of the data specified by the criteria range returns the Product (multiplication) of the data specified by the criteria range returns Standard Deviation of a sample on the data specified by criteria range returns Standard Deviation of population of data specified by the criteria range returns the Sum of the data specified by the criteria range returns Variance of sample of population of the data specified by criteria range returns Variance of entire population of data specified by the criteria range

3) D function arguments:

- D Function arguments look like: DFunction(database,field,criteria)

Example: =DCOUNT(A1:G2000,"Sales",J67:N68)

- database = Must be a Proper Data Set with Field Names.
- field = Name of field you want to make a calculation on

1. Field can be: Name of field like: "Sales" or Relative position amongst other field names, like: 7
2. If Sales is the $7^{\text {th }}$ field in the database and you are counting sales that meet the criteria you can use:
```
=DCOUNT(A1:G2000,"Sales",J67:N68)
or
=DCOUNT(A1:G2000,7,J67:N68)
```

- criteria $=$

1. Field Names must be above criteria. This is so D functions can communicate with Database.
2. Must include criteria in cell and Comparative Operator (for equal sign use lead apostrophe, like: '=West).
3. If you do not use a comparative operator, like typing just West, you are telling the D Functions to use "Contains" Criteria (Sometimes called "Partial Text" Criteria). This means that the Criteria "West" would find West and NorthWest and Western.
4. AND Criteria is listed in same row.
5. OR Criteria is listed on different rows.
4) Example of setup for D Functions are listed next two sections.

D Functions: AND Criteria is listed in same row

1) In the Criteria area:

- Field Names are listed above criteria
- AND Criteria is listed in same row.

2) Example:

,	J	K	L	M	N	O	P	
66	Question is: Is Date in 4th Quarter AND is the Region West AND is the SalesRep Gigi AND is the Product AIM Item?							
67	Date	Date	Region	SalesRep	Product			
68	>=10/1/2013	<=12/31/2013	=West	=Gigi	=AIM Item			
69								
70	Field calculating on:	Sales						
71	Count	7		K71: = DC	(A1:G2000,			
72	Total	24,978		K72: = DSU	1:G2000,K7			
73	Average	3,568		K73: =DA	GE(A1:G200	N68)		
74	Standard Deviation	2,506		K74: =DS	(A1:G2000,	68)		

D Functions: OR Criteria is listed in different rows

1) In the Criteria area:

- Field Names are listed above criteria
- OR Criteria is listed on different rows.

2) D Function OR Criteria looking at one column example:

1	J	K	L	M	N	0	P
42	D Functions:						
43	OR Criteria acting one one column:						
44	Question is: Is the Customer Amazon OR Microsoft OR Yahoo OR Google?						
45		Customer					
46		Amazon					
47		Microsoft					
48		Yahoo					
49		Google					
50	Total Sales	3,515,181		K50: =DS	200	s",	
51	Count Transactions	688		K51: = DC	:G2	Sales	49)

3) D Function OR Criteria looking at two columns example (Empty cells mean "any item"):

- Notice that in order to perform OR Criteria on different columns we have to include empty cells to tell the D functions to find anything that goes along with the OR Criteria. For example, in the below example the question really is: "Find Gigi in the SalesRep column with any customer name OR find Amazon in the Customer column with any SalesRep name".

Math Operators and Logical Tests (Boolean Calculations)

1) Math Operators can be used to perform Logical Tests.
2) When we use Math Operators to make Logical Tests we call the calculation a "Boolean Calculation".
3) TRUEs and FALSEs are sometimes called "Boolean" values.
4) Any Math Operation (+, $-,^{*}, ?,{ }^{\wedge}$) on Boolean values will convert TRUE to 1 and FALSE to 0.
5) Logical Tests with Math Operators:

- AND Logical Tests use Multiplication

1. Single cell example:

TRUE * TRUE = 1 = TRUE
FALSE * TRUE $=0=$ FALSE
TRUE * FALSE $=0=$ FALSE
FALSE * FALSE $=0=$ FALSE
2. Array formula example (Called: AND Logical Test Array Operation):
$(\mathrm{A} 16: \mathrm{A} 22=\mathrm{E} 16)^{*}(\mathrm{~B} 16: \mathrm{B} 22=\mathrm{F} 16) \rightarrow$
\{TRUE;TRUE;FALSE;FALSE;TRUE;TRUE;FALSE\}*\{TRUE;FALSE;FALSE;TRUE;FALSE;F
ALSE;FALSE\} \rightarrow \{1;0;0;0;0;0;0\}
1 = TRUE
0 = FALSE

- OR Logical Tests use Addition

1. Single cell example:

TRUE + TRUE $=2=$ TRUE
FALSE + TRUE = 1 = TRUE
TRUE + FALSE = 1 = TRUE
FALSE + FALSE $=0=$ FALSE
2. Array formula example (Called: OR Logical Test Array Operation):

```
(A16:A22=E16)+(B16:B22=F16) }
{TRUE;TRUE;FALSE;FALSE;TRUE;TRUE;FALSE}+{TRUE;FALSE;FALSE;TRUE;FALSE;F
ALSE;FALSE} }->{2;1;0;1;1;1;0
1 = TRUE
2 = TRUE
0 = FALSE
```


Standard Deviation calculation with AND Criteria: STDEV.S \& IF Functions Array Formula

1) There is no built-in STDEVSIF function so we have to create an Array Formula that will filter out the values we don't want to use in the calculation.
2) To calculate the standard deviation of the sample based on conditions or criteria, we can use the STDEV.S and IF functions and an AND Logical Test Array Operation.
3) Example:

A							B	C

4) How the AND Logical Test Array Operation calculates:
1. $=$ STDEV.S(IF(A4:A10=E4,IF(B4:B10=F4,C4:C10)))
i. Because we have two AND criteria, we use two IF functions.
2. =STDEV.S(IF(\{TRUE;TRUE;FALSE;FALSE;TRUE;TRUE;FALSE\},IF(B4:B10=F4,C4:C10)))
3. =STDEV.S(IF(\{TRUE;TRUE;FALSE;FALSE;TRUE;TRUE;FALSE\},IF(\{TRUE;FALSE;FALSE;TRUE;TRUE;FALSE;FALSE \},C4:C10)))
4. =STDEV.S(IF(\{TRUE;TRUE;FALSE;FALSE;TRUE;TRUE;FALSE\},IF(\{TRUE;FALSE;FALSE;TRUE;TRUE;FALSE;FALSE \},\{6279;9428;7417;6270;5610;2546;1987\})))
5. =STDEV.S(IF(\{TRUE;TRUE;FALSE;FALSE;TRUE;TRUE;FALSE\},IF(\{TRUE;FALSE;FALSE;TRUE;TRUE;FAL SE;FALSE\},\{6279;9428;7417;6270;5610;2546;1987\})))
i. Only when there is a TRUE in the first AND second Resultant Array (both in the same relative position) will the number be picked out to use in the STDEV.S function.
6. =STDEV.S(\{6279;FALSE;FALSE;FALSE;5610;FALSE;FALSE\})
i. FALSE values "filter" out numbers we don't want in AVERAGE function.
7. 473.05

OR Logical Test (OR Criteria)

1) OR Logical Test (using OR Criteria):

- The Goal of an OR Logical Test is to run two or more logical tests and see if at least one logical tests evaluate to TRUE.

1. Think of: "If you take out the garbage OR clean the table, you get desert".
i. If you take out the garbage, you get desert.
ii. If you clean the table, you get desert.
iii. If you do neither, you do NOT get desert.
iv. If you do both, you get desert.

- For an OR Logical Test with two tests we can get these possible answers:

1. TRUE, FALSE
2. FALSE, TRUE
3. FALSE, FALSE
4. TRUE, TRUE.
i. \#1, \#2 and \#4 will yield a TRUE from the OR Logical Test.
ii. \#1, \#2 and \#4 each yield at least one TRUE.

- For an OR Logical Test to evaluate to TRUE, you must get "At Least One TRUE".
- Functions that can perform OR Logical Tests:

1. OR function
2. SUMIFS and COUNTIFS if you do a Function Argument Array Operation in the criteria argument and the criteria are all in the same column.
i. For SUMIFS and COUNTIFS you can use the SUMPRODUCT function to add the resultant array and avoid Ctrl + Shift + Enter.
3. D Functions (OR Criteria goes on different rows (lines).
4. IF function
i. You can use the OR function in the logical_test argument to deliver a single TRUE or FALSE.
ii. If you are creating array formulas
5. Add Arrays with TRUEs and FALSEs (Adding means OR)

OR function

1) Performs OR Logical Test:
2) Enter 2 or more logical tests into OR function separated by commas.

- OR interprets:

1. Any non-zero number and TRUE $=$ TRUE.
2. Zero and FALSE $=$ FALSE.
3) OR function delivers a TRUE when at least one of the logical tests evaluate to TRUE.

- Example:

4	D	E	F	G	H	I	J	K	L	M
1	Customer	Product	COGS	Sales	OR Function		OR Logical Test (OR Criteria) $=$ At Least One Must Be TRUE			
2	Amazon	AIM Item	3,643	6,279	TRUE	H2: =OR(D2=\$K\$9,D2=\$K\$10,D2=\$K\$11,D2=\$K\$12)				
3	Fred Myer	DAB Item	8,815	9,428	FALSE	H3: =OR(D3=\$K\$9,D3=\$K\$10,D3=\$K\$11,D3=\$K\$12)	OR Function:			
4	Peet's	XOL Item	3,190	7,417	FALSE		Delivers TRUE when at least one logical test evaluates to TRUE.			
5	HD	RAD Item	3,636	6,270	FALSE					
6	HD	DAB Item	5,247	5,610	FALSE		OR Criteria acting one one column:			
7	McLendon's	RAD Item	2,984	5,424	FALSE		Question is: Is the Customer Amazon OR Microsoft OR Yahoo OR Google?			
8	Fred Myer	XOL Item	6,386	6,830	FALSE			Customer Group 1		
9	HD	RAD Item	1,175	2,611	FALSE			Amazon		
10	Costco	DAB Item	2,792	4,811	FALSE			Microsoft		
11	OD	XOL Item	16	23	FALSE			Yahoo		
12	Microsoft	DAB Item	7,222	8,206	TRUE			Google		

OR Criteria looking at one column using SUMIFS and COUNTIFS

1) If we put multiple items into the criteria argument of SUMIFS or COUNTIFS we are:

- Making a Function Argument Array Operation
- Performing OR Criteria on a single column.

2) Example of OR Logical Test with OR Criteria:

	D	E	F	G	H
1	Customer	Product	COGS	Sales	OR Function
2	Amazon	AIM Item	3,643	6,279	TRUE
3	Fred Myer	DAB Item	8,815	9,428	FALSE
4	Peet's	XOL Item	3,190	7,417	FALSE
5	HD	RAD Item	3,636	6,270	FALSE
6	HD	DAB Item	5,247	5,610	FALSE
7	McLendon's	RAD Item	2,984	5,424	FALSE
8	Fred Myer	XOL Item	6,386	6,830	FALSE
9	HD	RAD Item	1,175	2,611	FALSE
10	Costco	DAB Item	2,792	4,811	FALSE
11	OD	XOL Item	16	23	FALSE
12	Microsoft	DAB Item	7,222	8,206	TRUE
13	HD	AIM Item	4,648	8,450	FALSE
14	McLendon's	RAD Item	1,264	2,144	FALSE

Average calculation with OR Criteria: AVERAGE \& Array Formula (for 1 or more columns)
5) We can't use AVERAGEIFS with a Function Argument Array Operation because the Resultant Array delivers multiple averages that cannot then be used to calculate an average (for an average you must have just one total in numerator and one count in denominator).
6) To calculate an average based on conditions or criteria, we can use the AVERAGE and IF functions and an OR Logical Test Array Operation.
7) Example where OR Criteria is looking at one column:

4	A	B	C	D	E	F	G
12	Example where OR Criteria is looking at one column:						
13							
14	Customer	Sales			OR Criteria:		
15	Amazon	6,279			Amazon		
16	Google	9,428			Google		
17	Microsoft	7,417					
18	Amazon	6,270			Average		
19	Microsoft	5,610			7,326		E19: $\{=A V E R A G E(I F((A 15: A 19=E 15)+(A 15: A 19=E 16), B 15: B 19))\} ~$

8) How the OR Logical Test Array Operation calculates:
1. =AVERAGE(IF((A2:A6=D2)+(A2:A6=D3),B2:B6))
2. =AVERAGE(IF(\{TRUE;FALSE;FALSE;TRUE;FALSE\})+(A2:A6=D3),B2:B6))
3. =AVERAGE(IF((\{TRUE;FALSE;FALSE;TRUE;FALSE\})+(\{FALSE;TRUE;FALSE;FALSE;FALSE\}),B2:B6))
i. Any math operation on TRUEs and FALSEs convert them to 1 s and 0 s .
4. =AVERAGE(IF(\{1;1;0;1;0\},B2:B6))
i. Notice that we only get 0 s or 1 s because the question is asked of one column.
ii. The Resultant Array of 1 s and 0 s sits in the logical_test argument of the IF function. The logical_test argument interprets any non-zero number as TRUE and 0 as FALSE.
5. =AVERAGE(\{6279;9428;FALSE;6270;FALSE\})
i. FALSE values "filter" out numbers we don't want in AVERAGE function.
6. 7325.66666666667
9) Example where OR Criteria is looking at two columns (we have to worry about Double Counting):

2	A	B	C	D	E	F	G
24	Example where OR Criteria is looking at two columns (we have to worry about Double Counting):						
25							
26	SalesRep	Customer	Sales		SalesRep	Customer	
27	Gigi	Amazon	6,279		Gigi	Amazon	
28	Gigi	Google	9,428				
29	Mo	Microsoft	7,417		Average		
30	Pham	Amazon	6,270		6,027		E30: $\{=$ AVERAGE(IF((A27:A33=E27)+(B27:B33=F27),C27:C33))
31	Gigi	Amazon	5,610				
32	Gigi	McLendon's	2,546				
33	Shelia	Fred Myer	1,987				

10) How the OR Logical Test Array Operation calculates:
1. =AVERAGE(IF((A16:A22=E16)+(B16:B22=F16),C16:C22))
2. =AVERAGE(IF((\{TRUE;TRUE;FALSE;FALSE;TRUE;TRUE;FALSE $\})+(B 16: B 22=F 16), C 16: C 22))$
3. =AVERAGE(IF((\{TRUE;TRUE;FALSE;FALSE;TRUE;TRUE;FALSE\})+(\{TRUE;FALSE;FALSE;TRUE;FALSE;F ALSE;FALSE\}),C16:C22))
i. Any math operation on TRUEs and FALSEs convert them to 1 s and 0 s .
4. =AVERAGE(IF(\{2;1;0;1;1;1;0\},C16:C22))
i. Notice that we get 0 s or 1 s or 2 s because the question is asked of two columns.
ii. The Resultant Array of 2 s and 1 s and 0 s sits in the logical_test argument of the IF function. The logical_test argument interprets any non-zero number as TRUE and 0 as FALSE.
5. =AVERAGE(\{6279;9428;FALSE;6270;5610;2546;FALSE $\}$)
i. FALSE values "filter" out numbers we don't want in AVERAGE function.
6. 6026.6

Credit Analysis for Accounts Receivable Department with AND and OR Criteria

4	A	B	C	D	E	F	G	H	I	J
1	Our job in the AR Department is to access whether we should extend credit to customers.									
2	Rule \#1:	Sales Last Year >\$250,000 AND Asset Value >\$300,000 AND Credit Rating $1>=3$								
3	Rule \#2:	At least 1 of the credit ratings is exceeded.								
4	Rule \#3:	Sales Last Year $>\$ 250,000$ AND Asset Value $>\$ 300,000$ AND Late Payments Last Year <2 AND at least one of the credithurdles is exceeded.								
6		Sales Last Year	Asset Value	Late Payments Last Year	Credit Rating 1	Credit Rating 2				
7		\$250,000	\$300,000	2	3	7				
Customer Information:										
10	Name	Sales Last Year	Asset Value	Late Payments Last Year	Credit Rating 1	Credit Rating 2	Rule 1	Rule 2	Rule 3	IF For Rule 3
11	Birch Stores Inc.	\$250,000	\$370,000		2.4	7	FALSE	FALSE	FALSE	No Credit
12	RAD Web Design	\$430,313	\$392,808	4	3.1	9	TRUE	TRUE	FALSE	Credit
13	Blue Acorn Design	\$280,396	\$111,622	2	2.7	7.1	FALSE	TRUE	FALSE	No Credit
14	Shark Logistics Co.	\$280,306	\$370,448	1	4	5	TRUE	TRUE	TRUE	Credit
15	Foggy Camel Vacations	\$454,172	\$369,208		3.5	6.8	TRUE	TRUE	TRUE	Credit
16	Battalion's Moving Inc.	\$270,797	\$277,251	1	2.9	2	FALSE	FALSE	FALSE	No Credit
17										
18				G11: =AND(B11>\$B\$7,C11>\$C\$7,E11>=\$E\$7)						
19				H11: =OR(E11>\$E\$7,F11>\$F\$7)						
20				I11: =AND(B11>\$B\$7,C11>\$C\$7,D11<\$D\$7,OR(E11>\$E\$7,F11>\$F\$7))						
21				J11: =IF(AND(B11>\$B\$7,C11>\$C\$7,D11<\$D\$7,OR(E11>\$E\$7,F11>\$F\$7)),"Credit","No Credit")						

IF Function

1) Use IF function to put one of two things into a cell or formulas:

- Two things can be:

1. Two Numbers.
2. Two Words (Text).
3. Two Formulas.
4. Two anything.
5. logical_test argument is where you put your Logical Test.
i. logical_test interprets:
6. Any non-zero number and TRUE as TRUE.
7. Zero and FALSE as FALSE.
ii. logical_test can contain:
8. Single logical test like: A1>=B3
9. An array operation like: A16:A22=E16
10. AND function
11. OR function
12. ISNUMBER function
13. ISTEXT function
14. Any other Logical Function
15. Cell references with TRUEs or FALSES or Numbers
16. Numbers

- value_if_true argument is what will go in cell if Logical Formula gets a TRUE.
- value_if_false argument is what will go in cell if Logical Formula gets a FALSE.

2) Rule for using IF when you have more than 2 things to put into a cell:

- As long as there are still more than 1 possibility left, keep adding more IFs to the value_if_false argument.
- When there is only one option left, just put the last option into the value_if_false argument.
- At the end, keep typing "close parenthesis until you see the black one.

IS functions

1) IS Functions allow you to ask a question and get a TRUE or FALSE answer.
2) Types of questions that you ask with IS Functions:

- Is the value a Number?
- Is the value Text?
- Is the value a formula?

3) List of ISFUNCTIONS:

- ISNUMBER(value) Value refers to a number.
- ISTEXT(value) Value refers to text.
- ISBLANK(value) Value refers to an empty cell.
- ISERROR(value) Value refers to any error value.
- ISNA(value) Value refers to the \#N/A error value.
- ISERR(value) Value refers to any error value except \#N/A.
- ISNONTEXT(value) Value refers to any item that is not text.
- ISLOGICAL(value) Value refers to a logical value.
- ISFORMULA(value) Value refers to a formula

Conditional Calculations: PivotTable or Formulas?

1) Things to consider when deciding whether to use Formulas or PivotTables for Calculations with Conditions or Criteria:

- If the solution needs to instantly update when formula inputs or source data changes, then formulas are preferable.
- If you are making aggregate calculations with many criteria and you don't need the solution to update instantly when source data changes, then PivotTables are preferable.
- There are more functions in an Excel spreadsheet than there are in a PivotTable.
- PivotTable only do Aggregate Calculations.
- For Big Data formulas calculate slowly.
- PivotTables are easy to create.
- Sometimes it is easier to create your solution with formulas, sometimes it is easier with a PivotTable.

1. Example: Calculating totals for months is usually easier in a PivotTable:

8	Date	Units			Months	
9	$3 / 10 / 2016$	338		Sum of Units		
10	$3 / 14 / 2016$	556		Feb	625	
11	$1 / 28 / 2016$	124		Mar	1,199	
12	$1 / 16 / 2016$	205		Grand Toti	1,181	
13	$2 / 29 / 2016$	311				
14	$2 / 4 / 2016$	484				
15	$3 / 9 / 2016$	287				
16	$1 / 8 / 2016$	296				
17	$2 / 5 / 2016$	167				
18	$2 / 21 / 2016$	237				

2. Some OR Criteria Calculations are easier to do with formulas:

4	A	B	c	D	E	F	G	H	1	1	K	1
1	Create a formula that can add sales based on Sales Team and Region.											
2												
3	Sales Rer Sales		Region			Sales Team 1	Sales Team 2	Sales Team 3	Sales Team 4			
4	Kip	457	North America			June	Gigi	Fred	Irene			
5	June	368	North America			Sioux	Chin	Kip	Al			
6	Gigi	725	South America			Poppi	Sandi	Abdi	Mel			
7	Mel	736	South America			Tyrone	Shelia	Pham	Mo			
8	Tyrone	606	South America		North America	5301	8162	6211	2499			
9	Chin	1418	South America		South America	4307	5469	2929	2025			
10	Abdi	1110	South America									
11	Sandi	1489	North America		Check:	Sales Rep	(Multiple it $]_{\text {, }}^{\text {s }}$)			<<= Takes Longer t	reat	tTAbles
12	June	175	North America									
13	Shelia	1354	South America			Row Labels \checkmark	Sum of Sales					
14	Pham	132	North America			North America	5301					
15	Gigi	449	South America			South America	4307					
16	Mo	1333	North America			Grand Total	9608					
17	Sandi	1571	North America									
18	Chin	1553	North America				Sales Rep	(Multiple it T_{5})				
19	Tyrone	1196	South America									
20	June	679	North America				Row Labels S	Sum of Sales				
21	Pham	221	South America				North America	8162				
22	Pham	1097	North America				South America	5469				
23	Gigi	473	North America				Grand Total	13631				
24	Tyrone	573	South America									
25	Gigi	1160	South America					Sales Rep	(Multiple it $\mathbf{T}_{\mathbf{T}}$)			
26	June	1268	North America									
27	Sandi	1635	North America					Row Labels -	Sum of Sales			
28	Mel	152	North America					North America	6211			
29	Poppi	603	North America					South America	2929			
30	Irene	458	North America					Grand Total	9140			
31	Sioux	741	South America									
32	Fred	486	North America						Sales Rep	(Multiple Items -T]		
33	Tyrone	1227	North America									
34	Poppi	981	North America						Row Labels -	Sum of Sales		
35	Fred	798	North America						North America	2499		
36	Sioux	1191	South America						South America	2025		
37	Gigi	363	South America						Grand Total	4524		

Defined Name Scope

1）If you use the same name for a Defined Name on a different sheet，then：
－The first name used has a＂Workbook Scope＂and can be used and accessed on any sheet
－Any subsequent names used have a＂Worksheet Scope＂and can be accessed and used on the sheet that they were created（If you want to use the Worksheet Defined Name on different sheet you can place a sheet reference in from of it like：OR！COGS）
2）Example：

Name Manager				8 x
New．．．	it．．．Del			Eilter＊
Name	Value	Refers To	Scope	Cc
自COGS	［3，643＂；8，815．．．	＝ORISFS2：SF\＄2000	OR	
（ Gustomer $^{\text {a }}$	［＂Amazon＂；＂Fr．．．	＝ORISDS2：SDS2000	OR	
可 Date	［10／7／13＊；8／3．．．	＝ORISAS2：SAS2000	OR	
© Product	［＂AIM Item＂；－D．．．	＝OR！SES2：SES2000	OR	
（Gegion	［＇West＊；＂Sout．．．	＝ORISB\＄2：SB\＄2000	OR	
国 Sales	［6，279＂；＇9，428．．．	＝ORISGS2：SG\＄2000	OR	
（ SalesRep $^{\text {c }}$	\｛＂Gigi＂；＂Gigi＂；＂．．	＝ORISCS2：SCS2000	OR	
© COGS	\｛3，643＂； $8,815 \ldots$	＝AND！SFS2：SF\＄2000	Workbook	
国 Customer	［＂Amazon＂；＂Fr．．．	＝AND！SDS2：SD\＄2000	Workbook	
© Date	［10／7／13＂；＇8／3．．．	＝AND！SAS2：SAS2000	Workbook	
E Product	［＊AIM Item＂；${ }^{\text {d }}$ ．．．	＝AND！SE\＄2：\＄E\＄2000	Workbook	
（E）Region	［＇West＂，＂Sout．．．	＝AND！SBS2：SBS2000	Workbook	
© Sales	［6，279＂；＇9，428．．．	＝AND！SG\＄2：SG\＄2000	Workbook	
SalesRep	［＂Gigi＇；＂Gigi＇；＇．．	＝AND！SCS2：SC\＄2000	Workbook	
1 －III				，
Refers to：				
\checkmark OR！SFS2：SF\＄2000				
				Close

Cumulative List of Keyboards Throughout Class:

1) Esc Key:
i. Closes Backstage View (like Print Preview).
ii. Closes most dialog boxes.
iii. If you are in Edit mode in a Cell, Esc will revert back to what you had in the cell before you put the Cell in Edit mode.
2) F2 Key = Puts formula in Edit Mode and shows the rainbow colored Range Finder.
3) SUM Function: Alt + =
4) Ctrl + Shift + Arrow = Highlight column (Current Region).
5) Ctrl + Backspace = Jumps back to Active Cell
6) $\mathbf{C t r l}+Z=$ Undo.
7) $\mathbf{C t r l}+\mathbf{Y}=$ Undo the Undo.
8) $\mathrm{Ctrl}+\mathrm{C}=$ Copy.
9) $\mathbf{C t r l}+X=$ Cut.
10) Ctrl + V = Paste.
11) Ctrl + PageDown =expose next sheet to right.
12) Ctrl + PageUp =expose next sheet to left.
13) Ctrl + $\mathbf{1}$ = Format Cells dialog box, or in a chart it opens Format Chart Element Task Pane.
14) Ctrl + Arrow: jumps to the bottom of the "Current Region", which means it jumps to the last cell that has data, right before the first empty cell.
15) Ctrl + Home = Go to Cell A1.
16) Ctrl + End = Go to last cell used.
17) Alt keyboards are keys that you hit in succession. Alt keyboards are keyboards you can teach yourself by hitting the Alt key and looking at the screen tips.
i. Create PivotTable dialog box: Alt, N, V
ii. Page Setup dialog box: Alt, P, S, P
iii. Keyboard to open Sort dialog box: Alt, D, S
18) ENTER $=$ When you are in Edit Mode in a Cell, it will put thing in cell and move selected cell DOWN.
19) CTRL + ENTER = When you are in Edit Mode in a Cell, it will put thing in cell and keep cell selected.
20) TAB = When you are in Edit Mode in a Cell, it will put thing in cell and move selected cell RIGHT.
21) SHIFT + ENTER = When you are in Edit Mode in a Cell, it will put thing in cell and move selected cell UP.
22) SHIFT + TAB = When you are in Edit Mode in a Cell, it will put thing in cell and move selected cell LEFT.
23) Ctrl + T = Create Excel Table (with dynamic ranges) from a Proper Data Set.
i. Keyboard to name Excel Table: Alt, J, T, A
ii. \quad Tab $=$ Enter Raw Data into an Excel Table.
24) Ctrl + Shift + ~ (`) = General Number Formatting Keyboard.
25) Ctrl + ; = Keyboard for hardcoding today's date.
26) Ctrl + Shift + ; = Keyboard for hardcoding current time.
27) Arrow Key = If you are making a formula, Arrow key will "hunt" for Cell Reference.
28) Ctrl + B = Bold the Font
29) Ctrl + * (on Number Pad) or Ctrl + Shift +8 = Highlight Current Table.
30) Alt + Enter = Add Manual Line Break (Word Wrap)
31) $\mathbf{C t r l}+\mathbf{P}=$ Print dialog Backstage View and Print Preview
32) $\mathbf{F 4}$ Key = If you are in Edit mode while making a formula AND your cursor is touching a particular Cell Reference, F4 key will toggle through the different Cell References:
i. $\quad \mathbf{A 1}=$ Relative
ii. $\mathbf{\$ A} \mathbf{\$ 1}=$ Absolute or "Locked"
iii. $\quad \mathbf{A} \boldsymbol{\$ 1}=$ Mixed with Row Locked (Relative as you copy across the columns AND Locked as you copy down the rows)
iv. $\mathbf{\$ A 1}=$ Mixed with Column Locked (Relative as you copy down the rows AND Locked as you across the columns)
33) Ctrl + Shift + $\mathbf{4}$ = Apply Currency Number Formatting
34) Tab key = When you are selecting a Function from the Function Drop-down list, you can select the function that is highlighted in blue by using the Tab key.
35) $\mathbf{F 9} \mathbf{K e y}=$ To evaluate just a single part of formula while you are in edit mode, highlight part of formula and hit the F9 key.
i. If you are creating an Array Constant in your formula: Hit F9.
ii. If you are evaluating the formula element just to see what that part of the formula looks like, REMEMBER: to Undo with Ctrl + Z.
36) Alt, E, A, A = Clear All (Content and Formatting)
37) Evaluate Formula One Step at a Time Keyboard: Alt, M, V
38) Keyboard to open Sort dialog box: Alt, D, S
39) Ctrl + Shift + L = Filter (or Alt, D, F, F) = Toggle key for Filter Drop-down Arrows
40) $\mathbf{C t r l}+\mathbf{N}=$ Open New File
41) $\mathbf{F 1 2}$ = Save As (Change File Name, Location, File Type)
42) Import Excel Table into Power Query Editor: Alt, A, P, T
43) Ctrl + 1 (When Chart element in selected): Open Task Pane for Chart Element
44) F4 Key = If you are in Edit mode while making a formula AND your cursor is touching a particular Cell Reference, F4 key will toggle through the different Cell References:
i. $\quad \mathbf{A 1}=$ Relative
ii. $\mathbf{\$ A \$ 1}=$ Absolute or "Locked"
iii. $\mathbf{A} \$ \mathbf{1}=$ Mixed with Row Locked (Relative as you copy across the columns AND Locked as you copy down the rows)
iv. $\mathbf{\$ A 1}=$ Mixed with Column Locked (Relative as you copy down the rows AND Locked as you across the columns)
45) Keyboard to open Scenario Manager = Alt, T, E
46) Ctrl + Tab = Toggle between Excel Workbook File Windows
47) Ctrl + Shift + F3 = Create Names From Selection
48) Ctrl + F3 = open Name Manager
49) F3 = Paste Name or List of Names
50) Alt + F4 = Close Active Window
51) Window Key + Up Arrow = Maximize Active Window
52) Ctrl + Shift + Enter = Keystroke to enter Array Formulas that: 1) have a function argument that requires it, or 2) whether or not you are entering the Resultant Array into multiple cells simultaneously.
53) Ctrl + / = Highlight current Array

New In This Video:

54)
