Office 2016- Excel Basics 19

Video/Class Project \#31

Excel Basics 19: SUMIFS, COUNTIFS, AVERAGEIFS, MINIFS, MAXIFS functions to make calculations with one or more conditions or criteria

Goal in video \# 19: Learn about how to use SUMIFS, COUNTIFS, AVERAGEIFS, MINIFS, MAXIFS functions to make calculations with one or more conditions or criteria.

Topics Covered in Video:

We have already seen four Videos in this class that show how to use the SUMIFS function to add with a condition and \& COUNTIFS function to count with a condition:

1) Excel Basics 3: Count \& Add with COUNT, COUNTA, SUM, COUNTIFS, SUMIFS Functions (Intro Excel \#3)

,	A	B	C	D	E	F	G
1	Date	SalesRep	Sales		Goal: Count How Many Sales Gigi Made		
2	10/23/2017	Chin	\$100		Criteria	Count	
3	10/23/2017	Gigi	\$200		Gigi	4	=COUNTIFS(B2:B10,E3)
4	10/24/2017	Dawn	\$100				COUNTIFS counts with one condition
5	10/24/2017	Chin	\$300				
6	10/24/2017	Chin	\$700		Goal: Add the Sales for Gigi		
7	10/23/2017	Dawn	\$100		Criteria	Sum	
8	10/24/2017	Gigi	\$200		Gigi	\$1,100	=SUMIFS(C2:C10,B2:B10,E8)
9	10/24/2017	Gigi	\$500				SUMIFS adds with one condition
10	10/23/2017	Gigi	\$200				

COUNTIFS(criteria_range1, criteria1)

- Counts just some of the items in a range of cells based on a condition of set of criteria. Can count with 1 or more conditions/criteria.
- criteria_range 1 argument will contain the range with all the items to possible count.
- criteria1 argument contains the condition or criteria that tells the function what to count. Conditions and criteria could be things like:

1. Text (like "Gigi").
2. Dates or Numbers like: $10 / 23 / 2017$

SUMIFS(sum_range, criteria_range1, criteria1)

- Add just some of the numbers in a range based on a condition of set of criteria. Can add with 1 or more conditions/criteria.
- sum_range argument will contain the range with the numbers.
- criteria_range1 argument will contain the range with all the items to possible consider.
- criteria1 argument contains the condition or criteria that tells the function what to consider. Conditions and criteria could be things like:

1. Text (like "Gigi").
2. Dates or Numbers like: $10 / 23 / 2017$
2) Excel Basics 4: PivotTables \& SUMIFS Function to Create Summary Reports (Intro Excel \#4)

3) Excel Basics 12: Complete Formula Lesson of Formula Types \& Formula Elements 12 Examples

	A	B	C	D	E	F	G
1	Product	Sales		Goal: Count how many of each product we sold			
2	Quad	\$43.00		Product	Count		
3	Sunset	\$23.00		Aspen		$1=C O U N T I F S(\$ A \$ 2: \$ A \$ 7, D 3)$	
4	Sunset	\$23.00		Quad		3 COUNTIFS counts with one condition	
5	Quad	\$43.00		Sunset	2		
6	Aspen	\$19.95					
7	Quad	\$43.00					

4) Excel Basics 18: Defined Names in Excel Formulas \& Functions \& For Jump Go To!

	A	B	C	D	E	F	G	H	I J	K
1	Transaction \#	Date	Sales	SalesRep		Goal: Crea	te SalesRep Sale	R	Report with SUMIFS Function and	ned Names
2	12568	12/1/2014	\$19,161	Jo		SalesRep	Sales			
3	12569	12/1/2014	\$15,027	Gigi		Jo	\$52,103.00		=SUMIFS(Sales,SalesRep,F3)	
4	12570	12/2/2014	\$12,953	Chin		Gigi	\$44,124.00		SUMIFS adds with one condition	
5	12571	12/2/2014	\$12,670	Jo		Chin	\$34,843.00			
6	12572	12/2/2014	\$8,893	Gigi						
7	12573	12/3/2014	\$4,667	Chin						
8	12574	12/3/2014	\$20,272	Jo						
9	12575	12/3/2014	\$20,204	Gigi						
10	12576	12/3/2014	\$17,223	Chin						

5) Now we want to see how to make calculations with one or more conditions / criteria using these functions:
i. SUMIFS: Adds numbers with one or more conditions or criteria
ii. COUNTIFS: Counts with one or more conditions or criteria
iii. AVERAGEIFS: Averages numbers with one or more conditions or criteria
iv. MAXIFS: Finds Maximum number with one or more conditions or criteria
v. MINIFS: Finds Minimum number with one or more conditions or criteria
6) Example 1:
i. Using COUNTIFS Function to count how many Business classes you had with a grad of 3.0 or higher

ii. In this example COUNTIFS has to count the records that contain the Department "BUSN" AND has a grade that is equal to or bigger than 3.0. This means that for each record in the Proper Data Set, there has to be the text "BUSN" in the Department Field AND a number greater than or equal to 3 in the Grade Field.
7) Comparative Operators

$=$	Equal: are two things equal?
$<>$	Not: are two things not equal? Type less than symbol, then greater than symbol.
$>$	Greater than: is the thing on the left greater than the thing on the right?
$>=$	Greater than or equal to: is thing on the left greater than or equal to thing on the right?
$<$	Less than: is the thing on the left less than the thing on the right?
$<=$	Less than or equal to: is the thing on the left less than or equal to the thing on the right?

8) Logical Tests
i. A Logical Test is a test that evaluates to TRUE or FALSE.
ii. Logical Tests have only two possible answers: TRUE or FALSE.
iii. Examples of Single Logical Tests:

1. "Busn" = "Busn" this evaluates to TRUE
2. "ECON" = "Busn" this evaluates to FALSE
3. $3.2>=3$ this evaluates to TRUE
4. $2.7>=3$ this evaluates to FALSE
5. $12=12$, this evaluates to TRUE
6. $11=12$, this evaluates to FALSE
7. "Dog"=" ${ }^{\text {Dog", this evaluates to TRUE }}$
8. "Cat"="Dog", this evaluates to FALSE
9. $500>=500$, this evaluates to TRUE
10. 499.99>=500, this evaluates to FALSE
iv. Excel and Access are not case sensitive
11. "BUSN" = "Busn"
9) AND Logical Test

- The Goal of an AND Logical Test is to run two or more logical tests and see if ALL logical tests evaluate to TRUE.
- Think of: "If you take out the garbage AND clean the table, you get desert". Only if you get two TRUEs (took out garbage AND cleaned the table) do you get desert.
- For an AND Logical Test with two tests we can get these possible answers:

1. FALSE, FALSE
2. TRUE, FALSE
3. FALSE, TRUE
4. TRUE, TRUE.

- Only \#4 example (TRUE, TRUE) will yield a TRUE from the AND Logical Test.
- For an AND Logical Test to evaluate to TRUE, you must get "All Are TRUE".
- Functions that can perform AND Logical Tests:

1. SUMIFS: Adds numbers with one or more conditions or criteria
2. COUNTIFS: Counts with one or more conditions or criteria
3. AVERAGEIFS: Averages numbers with one or more conditions or criteria
4. MAXIFS: Finds Maximum number with one or more conditions or criteria
5. MINIFS: Finds Minimum number with one or more conditions or criteria

- If we enter more than one criteria_range argument and more than one criteria argument into SUMIFS, COUNTIFS, AVERAGEIFS, MAXIFS, or MINIFS we are performing an AND Logical Test with AND Criteria.
- Picture of an AND Logical Test:

```
AND Logical Test Means We Have Two or More Logical Tests and All Tests Must Come Out TRUE
Think of: "If you take out the garbage AND clean the table, you get desert".
Only if you get two TRUEs (took out garbage AND cleaned the table) do you get desert.
```

Goal: Count How Many BUSN Classes You Had With a Grade of 3 or Higher
The AND Logical Test is:
the Department Field must contain BUSN
AND
the Grade Hurdle Field must contain a number that is $>=3$.

Criteria:

Department	Grade Hurdle
BUSN	$>=3$

In Order to Count The Record, you Must Get Two TRUEs!!!!

Quarter	Year	Department	Class \#	Credits	Grade
Winter	2016	ECON	201	5	2.2
Sum	2016	BUSN	102	5	1.8
Winter	2017	COMM	101	5	3.1
Winter	2016	BUSN	210	5	4

AND Logical Test must get Two TRUEs:

Quarter	Year	Department	Class \#	Credits
		FALSE		
		TRUE		
		FALSE		
		TRUE		
				FALSE
				TRUE

10) Compare SUMIFS and similar Functions and PivotTables for making Calculations with Conditions or Criteria.

- Advantage of PivotTable:

1. Quick and easy to make.
2. Conditions or Criteria in Rows or Columns area are created automatically by dragging a field to Rows or Columns area. When you drag a field to the Rows or Columns area a unique list of items from the field is created.

- Disadvantage of PivotTable:

1. If source data changes, you must right-click PivotTable and point to Refresh.
2. Sometimes the Conditions or Criteria you want to use in your calculation is hard to create using a PivotTable. For example, if you use a comparative operator with your Conditions or Criteria, it may be hard to create the calculation using a PivotTable.

- Advantage of SUMIFS:

1. If source data changes, formulas update instantly.
2. If you have Conditions or Criteria that use Comparative Operators, it is often easier to use SUMIFS and other similar Functions than it is to use a PivotTable.

- Disadvantage of SUMIFS:

1. Have to type out conditions/criteria for Rows or Columns area.
2. When making Calculations with Conditions or Criteria, it often takes longer to create a formula solution than it does to create a PivotTable solution.
1) Example 1

2) Example 2

3) Example 3

4) Example 4

	A	B	C	D	E	F	G	H	I	J	K	L	
1	Date	Year	Product	Sales	COGS		Goal: Add Total COGS for Quad Product in the Year 2017.						
2	7/15/2018	2018	Quad	2453.52	1128.6		and have ability to change criteria and have formulas instantly update						
3	2/15/2016	2016	Sunset	2391.92	980.69								
4	11/15/2017	2017	Carlota	53.23	22.89		The AND Logical Test is: the Product Field must contain Quad AND the Year Field must contain 2017.						
5	8/31/2018	2018	Carlota	1558.76	888.49								
6	12/16/2018	2018	Sunset	917.72	568.99								
7	5/16/2018	2018	Sunset	1876.27	731.75								
8	12/27/2016	2016	Yanaki	1487.82	684.4								
9	9/18/2017	2017	Quad	2017.73	807.09	Criteria:							
10	6/4/2018	2018	Yanaki	1459.48	569.2		Product	Year					
11	5/9/2018	2018	Carlota	1020.18	591.7		Quad	2017					
12	7/6/2016	2016	Carlota	653.87	274.63		Total COGS	\$35,310.97	=SUMIFS(E2:E665,C2:C665,G11,B2:B665,H11)				
13	11/9/2017	2017	Yanaki	1044.37	616.18				SUMIFS adds numbers with two conditions/criteria				
14	9/7/2017	2017	rarlnta	$190 \cap 47$	98824								

5) Example 5

2	A	B	C	D	E
1	Date	Year	Product	Sales	COGS
2	7/15/2018	2018	Quad	2453.52	1128.6
3	2/15/2016	2016	Sunset	2391.92	980.69
4	11/15/2017	2017	Carlota	53.23	22.89
5	8/31/2018	2018	Carlota	1558.76	888.49
6	12/16/2018	2018	Sunset	917.72	568.99
7	5/16/2018	2018	Sunset	1876.27	731.75
8	12/27/2016	2016	Yanaki	1487.82	684.4
9	9/18/2017	2017	Quad	2017.73	807.09
10	6/4/2018	2018	Yanaki	1459.48	569.2
11	5/9/2018	2018	Carlota	1020.18	591.7
12	7/6/2016	2016	Carlota	653.87	274.63
13	11/9/2017	2017	Yanaki	1044.37	616.18
14	9/7/2017	2017	Carlota	1900.47	988.24
15	4/13/2017	2017	Carlota	1129.45	463.07
16	6/20/2017	2017	Carlota	328.7	128.19
17	5/26/2017	2017	Sunset	58	36.54
18	3/3/2018	2018	Sunset	1646.76	1037.5
19	11/10/2017	2017	Carlota	1865.2	895.3
20	1/18/2017	2017	Quad	884.17	512.82

Goal: Add Total Sales for each Product in the Year 2017
and have ability to change criteria and have formulas instantly update

6) Example 6

7) Example 7

8) Example 8

4	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P
1	Post	Time to Assemble Product at Post (Seconds)		Goal: Count how many times a Post fell below required <10 second assembly time.								Assembly Line With 12 Posts:				
2	1	9														
3	2	9.2		AND Logical Test: Post has to equal given post AND Seconds <10												
4	3	8.3														
5	4	8.3		Hurdle in Seconds:	<10											
6	5	8.8														
7	6	10		Post	Count											
8	7	10.7		1	38	=COUNTIFS(\$A\$2:\$A\$589,D8,\$B\$2:\$B\$589,\$E\$5)										
9	8	8		2	41	COUNTIFS counts with two conditions/criteria										
10	9	9.1		3	45											
11	10	10.7		4	40											
12	11	9.9		5	45											
13	12	8.5		6	42											
14	1	10		7	17											
15	2	8.6		8	48											
16	3	9.1		9	45											
17	4	8.3		10	42											
18	5	8.1		11	19											
19	6	10.4		12	39											
20	7	9.1														
21	8	8.4		** This is an example of where a PivotTable would be harder to create												
22	9	8.3		because our condition uses a comparative operator (we have a hurdle as a condition).												
90	101	11														

9) Example 9 \& 10

