Simple Interest \(I = P \)
Annual simple Interest Rate = \(R \)
Principal Amount Borrowed = \(P \)
Time = Fraction of year = \(T \)

\[I = P \times R \times T \]

\[
\{\text{Fraction of year from months}\} = \frac{\text{# of Months}}{12}
\]

\[
\{\text{Fraction of year from day's exact method}\} = \frac{\text{# of Days}}{365 \text{ or } 366}
\]

\[
\{\text{Fraction of year from day's banker's method}\} = \frac{\text{# of Days}}{360}
\]
\[P = \frac{I}{(R \times T)} \]

in Excel: \(P = I/(R \times T) \)

\[R = \frac{I}{(P \times T)} \]

in Excel: \(R = I/(P \times T) \)

\[T = \frac{I}{(P \times R)} \]

in Excel: \(T = I/(P \times R) \)
Section 9.2

\[T = \frac{I}{(P \times R)} \]

\[T_y = \frac{I}{(P \times R)} \]

\[T_m = \frac{I}{(P \times R)} \times 12 \]

Excel = \[I / (P \times R) \times 12 \]

\[T_d = \frac{I}{(P \times R)} \times 360 \]

Excel = \[I / (P \times R) \times 360 \]
Maturity Value = M
Discount Rate = D
Time (years) = T
Bank Discount = B
(Interest Paid Up Front)
Proceeds (Loan Amount) = P

Formulas:

1. \[B = M \times D \times T \]

2. \[
\begin{align*}
\text{Effective Simple Rate} & = \frac{B}{P \times T} \\
\text{Discount Rate} & \end{align*}
\]

3. \[M = \frac{P}{1 - D \times T} \]

4. \[P = M - B \]