Excel \& Business Math
 Video/Class Project \#08
 Arithmetic Tips for Add, Subtract, Multiply, Divide, Exponents, Rounding

Topics

1) Whole Numbers \& Decimals.. 1
2) Write Number in English.. 1
3) Math Operators \& Order of Operations ... 2
4) Adding in Excel... 3
5) Subtracting in Excel.. 4
6) Check Work When Subtracting or Adding.. 5
7) Multiplying in Excel.. 6
8) Dividing in Excel... 8
9) ROUND Function Rules, including Multiplying \& Dividing Money .. 10
10) Check Work When Multiplying or Dividing .. 10
11) Exponents .. 11
12) Rounding \& ROUND Function Video Examples: .. 12
13) Whole Numbers \& Decimals
i. Define Whole Number (Counting Numbers) = A number with no decimals, such as 5,678, and not negative.
ii. Define Integer = Positive \& Negative Counting Numbers and Zero
iii. Define Decimal ==> A number written with a decimal such as 4.987 or 0.062 or -1.50
14) Write Number in English
i. Sometimes we need to write our number, like with checks:

Whole Numbers: numbers to the left of the decimal point. Uses the ten oneplace digits: $0,1,2,3,4,5,6,7,8,9$. Use a comma every third place.															The word "and" goes here when you write the words.	Decimals: numbers to the right of the decimal point - representing parts of a whole - "a whole" is the number 1 and the "part" is a number between 1 and 0 .					
Trillions			Billions			Millions			Thousands			Ones			"AND"						
								¢				0 0 0 0 0 1	$\stackrel{\stackrel{\square}{\square}}{\stackrel{\circ}{\circ}}$	®		$\stackrel{\varrho}{\stackrel{\infty}{¢}}$					
			4	5	6	7	5	8	4	5	2	1	1	9	-	1	5	5			

ii. Here is a Check Example for writing numbers as words:

3) Math Operators \& Order of Operations

Math Operators:

() Parentheses.
^ Raising to an exponent. ("caret", like carrot)

* Multiplying.
/ Dividing.
+ Adding.
- Subtracting or Negation.

Math Operators on the Standard Keyboard:

(Shift + 9
) Shift +0
\wedge Shift + 6

* Shift + 8, or Number Pad
/ / Key, or Number Pad
+ Shift $+=$, or Number Pad
- - Key, or Number Pad

Math order of operations
First, do everything in the parentheses
Second, do all exponents
Third, do all multiplication and division, left to right
4 Fourth, do all adding and subtracting, left to right

Math order of operations

1	()
2	\wedge
3	$* /$ Left to Right
4	+ Left to Right

i. Excel Example as seen in Excel:

	A	B	C	D	E
1	MOOO Example 1:				
2	Time Sheet using Military Time				
3	Gross Pay = Hours Worked * Wage per Hour				
4	Time In	Time Out	Wage	Gross Pay	
5	8	15	27.75	194.25	$=(\mathrm{B5}-\mathrm{A} 5) * \mathrm{C} 5$

4) Adding in Excel

i. Adding in Excel with SUM Function

1. If numbers are next to each other, use SUM Function with a range of cells, rather than using the + symbol.
2. If numbers are not next to each other, you can use SUM Function or the + symbol.
3. Commutative Property of Addition allows us to add in any order. You can add the numbers in any order and you still get the equivalent sum, as in:
i. $\quad 391.62+401.58+324.21=324.21+401.58+391.62=1117.41$ and so on...
4. If ranges of cells are not next to each other, use SUM with ranges separated by commas.
5. If individual amounts must be rounded, use ROUND Function BEFORE adding.
6. Efficient to use SUM function for adding because:
i. Faster than using the plus symbol.
ii. Can handle structural changes like inserting a row.
ii. Examples for Adding as see in Excel:

A		B	c	D		E	F	G	H
Adding in Excel Example 1: If numbers are next to each other, use SUM Function with a range of cells, rather than using the + symbol Efficient to use SUM function because: Fast. Can handle structural changes like inserting a row.									
Invoice 12305									
Product	Amount								
Quad	\$	45.32		Efficient to use SUM function because:					
Sunshine	\$	50.00		1) Fast.					
Carlota	\$	169.30		2) Can handle structural changes like inserting a row.					
Majestic Beaut	\$	25.00							
MTA	\$	102.00							
Total	\$	391.62		$=S U M(B 8: B 12)$ is an efficient formula.					
		391.62		$=\mathrm{B} 12+\mathrm{B} 11+\mathrm{B} 10+\mathrm{B} 9+\mathrm{B} 8$ is NOT an efficient formula.					
Adding in Excel Example 2: If numbers are not next to each other, you can use SUM Function or the + symbol									
Invoice 12305	Amount			Invoice 12332				Invoice 12288	Amount
Quad	\$	45.32		Sunshine	\$	90.43		Sunset	\$ 37.63
Sunshine	\$	50.00		Quad	\$	53.13		Aspen	\$ 91.24
Carlota	\$	169.30		MTA	\$	78.62		Quad	\$ 39.02
Majestic Beaut	\$	25.00		Majestic Beaut	\$	105.70		Yanaki	\$ 106.94
MTA	\$	102.00		Carlota	\$	73.70		Crested Beaut	\$ 49.38
Total	\$	391.62		Total	\$	401.58		Total	\$ 324.21
Total		1,117.41		$=\mathrm{B} 25+\mathrm{E} 25+\mathrm{H} 25$					
			or	$\begin{aligned} & \text { **Okay to use }++++ \text { or S } \\ & =\text { SUM }(B 25, E 25, \mathrm{H} 25) \end{aligned}$			n	re not next to	each other.
		1,117.41							
Adding in Excel Example 3: Commutative Property of Addition allows us to add in any order You can add the numbers in any order and you still get the equivalent sum, as in: $391.62+401.58+324.21=324.21+401.58+391.62=1117.41$ and so on...									
		1,117.41		$=$ SUM ($\mathrm{H} 25, \mathrm{E} 25, \mathrm{~B} 25$)					
		1,117.41		$=\mathrm{H} 25+\mathrm{B} 25+\mathrm{E} 25$					

5) Subtracting in Excel

i. Use Minus Sign when there are two numbers, like when you calculate Net Income.
ii. When you are subtracting three or more numbers, it usually is easier to add all the numbers that should be subtracted using the SUM Function, and then subtract that single SUM.
iii. Examples for Subtracting as see in Excel:

6) Check Work When Subtracting or Adding
i. You can always check your work when adding or subtracting:

1. Adding:
i. If $\mathbf{1 0}+\mathbf{5}=\mathbf{1 5}$
ii. Then: $\mathbf{1 5} \mathbf{- 5} \mathbf{5} \mathbf{= 1 0}$ AND 15-10=5
ii. Example in Excel:

	A	B	C	D	E	F
1	Add and Subtract Example 1: You can always check your work when adding and subtracting:					
3						
4	If this is TRUE:					
5	Total Revenue - Total Expenses = Net Income					
6	Total Revenue	\$5,625,896.00				
7	Total Expenses	\$4,985,623.00				
8	Net Income	\$640,273.00	= $\mathrm{B} 6-\mathrm{B7}$			
9						Check
10	Then this is TRUE:					Your
11	Total Expenses + Net Income = Total Revenue					Work
12	Total Expenses	\$4,985,623.00				
13	Net Income	\$640,273.00				
14	Total Revenue	\$5,625,896.00	$=B 12+B 13$			
15						
16	You could also check:					
17	Total Revenue - Net Income = Total Expenses					
18	Total Revenue	\$5,625,896.00				
19	Net Income	\$640,273.00				
20	Total Expenses	\$4,985,623.00	$=\mathrm{B} 18-\mathrm{B} 19$			

7) Multiplying in Excel

i. If you are multiplying two numbers use * Symbol.
ii. Terms for Multiplying:
$85 * 21.25=1,806.25$
\uparrow
Factor \(\prod_{\substack{multiplication

"Symbol"

"oper

operator"}}\)| product |
| :---: |

when we multiply we ask:
"Give me 85 of
these: 21.25 "
iii. Commutative Property of multiplication means 2* $5=5 * 2=10$
iv. If you are multiplying in succession three or more numbers, you can use the PRODUCT Function.
v. When multiplying in business, since we often are dealing with money, we have to consider whether or not we need to use the ROUND Function. If 1) We are required to round, 2) The result of multiplying yields extraneous decimals, \& 3) We use result in subsequent formula, we MUST use ROUND.
vi. Specific example when you are multiplying but don't need to use the ROUND Function:

1. When multiplying a Whole Number by Money (Dollars \& Pennies), you will never get extraneous decimals.
vii. Specific example when you are multiplying, and you need to use the ROUND Function:
2. When multiplying Money (Dollars \& Pennies) times a Decimal, you CAN get extraneous decimals.
viii. When you need to consider using the ROUND Function, if you want to be safe when performing multiplication, anytime you are multiplying decimals and you are dealing with Money, just use the ROUND Function.
ix. Examples for Multiplying as see in Excel:

8) Dividing in Excel

i. In Excel when we are dividing two numbers use / Symbol
ii. Terms for Division:

1. When you are performing division, the formula is:

Numerator/Denominator = Quotient
2. When you are performing division, you are asking the question: "How Many Denominators are in the Numerator?"

iii. Dividing by zero not allowed because "How many Zeroes are in a number???" We have no way of answer that question.
iv. In Excel we can divide with these two functions:

1. QUOTIENT Function gives you just the integer answer
2. MOD Function gives you just the remainder answer
v. Same Rounding Rules we saw for multiplying apply with division. When we MUST use ROUND:
3. We are required to round
4. The result of dividing yields extraneous decimals
5. We use result in subsequent formula
vi. Examples for dividing as seen in Excel are on next page:

9) ROUND Function Rules, including Multiplying \& Dividing Money
i. MUST use ROUND:
1. We are required to round
2. You have extraneous decimals, or with money: you are multiplying or dividing and you might have extraneous decimals
3. We use result in subsequent formula

10)Check Work When Multiplying or Dividing

ii. You can always check your work when multiplying or dividing:

1. If $\mathbf{1 0} / \mathbf{2}=\mathbf{5}$
2. Then $\mathbf{5 * 2} \mathbf{~ = ~} \mathbf{1 0}$ AND $\mathbf{1 0} / \mathbf{5}=\mathbf{2}$
iii. Examples as seen in Excel:

A	A	B	C	D	E	F
1 2 3	Multiply and Divide Example 1: You can always check your work when Multiplying or Dividing: **by using the non-rounded original numbers					
4						
5	If this is TRUE:					
6	$\begin{aligned} & \text { Quantity * Price = Total } \\ & 85 * 21.255=1806.675 \end{aligned}$					
8	Product	Quad				
9	Quantity	85				Check Your Work
10	Price	21.255				
11	Total	1806.675	=B10*B9			
12						
13	Then this is TRUE:					
14	$\begin{aligned} & \text { Total / Price = Quantity } \\ & 1806.675 / 21.255=85 \end{aligned}$					
15						
16	Product	Quad				
17	Total	1806.675				
18	Price	21.255				
19	Quantity	85	=B17/B18			
20						
21	You could also check:					
22	$\begin{aligned} & \text { Total / Quantity = Price } \\ & 1806.675 / 85=21.255 \end{aligned}$					
23						
24	Product	Quad				
25	Total	1806.675				
26	Quantity	85				
27	Price	21.255				

11) Exponents

i. Exponents are convenient way to multiply when you have to multiply the same number over and over!
ii. In Excel the operator is caret: ${ }^{\wedge}$ (Shift + 6)
iii. Terms:

iv. In Excel the steps to type a label that shows the Base and Exponent are:

1. Type a lead apostrophe (so number can be considered text)
2. Type Base and Exponent
3. Highlight Exponent
4. Ctrl + 1 to open Format Cells Dialog Box, then on Font Tab, check Superscript checkbox
v. Example as seen in Excel:

12) Rounding \& ROUND Function Video Examples:

4	A	B	C	D	E	F	G	H
1 2 3	Rounding Example 1: Round to the Penny when you are dealing with dollars and cents ROUND(Formula,2)							
4								
5	Invoice	Amount	Discount Rate	Discount Amount			Incorrect:	
6	12254	1099.11	0.01	10.99	=ROUND(C	C6*B6,2)	10.9911	$=86 * C 6$
7	12255	367.46	0.015	5.51			5.5119	
8	12256	712.35	0.03	21.37			21.3705	
9	12257	655.16	0.02	13.1			13.1032	
10			Total	50.97			50.9767	
11								
12 13 14	Rounding Example 2: Round to the Dollar is required for a few tax calculations, for example Federal Income Tax Forms. ROUND(Formula,0)							
15								
16	Name	Taxable Amount	Tax Rate	Paid Tax			Incorrect:	
17	Sioux	48661.43	0.125	6083	=ROUND(C	**B17,0)	6082.67875	$=817 * C 17$
18	Imani	52861.1	0.13	6872			6871.943	
19	Bob	51487.39	0.125	6436			6435.92375	
20	Gigi	48436.34	0.13	6297			6296.7242	
21			Total	25688			25687.2697	
22								
23 24 25	Rounding Example 3: Round to the thousandths position because the syllabus states that that is required ROUND(Formula,3)							
26								
27	Max Possible Points		500					
28								
29	Student	Class Score	Grade				Grade	
30	Pham	401.7	0.803	=ROUND(B30/\$C\$27	7,3)		0.8034	$=830 / \$ C \$ 27$
31	Miki	359.1	0.718				0.7182	
32	Abdi	386.7	0.773				0.7734	
33	Phil	389.5	0.779				0.779	
34		Average	0.768	=ROUND(AVERAGE(C	C30:C33),3)		0.7685	
35								
36 37 38	Rounding Example 4: Round to the thousands position, sometimes you need to do this when creating a Financial Report. ROUND(Formula,-3)							
39								
40	Company	Cash Balance	Round to Thousands, Divide by 1000					
41	GOOG	48,088,124,879	48,088,125	=ROUND (B41,-3)/10	000			
42	MSFT	11,324,045,674	11,324,046					
43	YHOO	1,526,427,125	1,526,427					
44	FB	18,434,320,789	18,434,321					

New Keyboard In This Video

1. Esc Key = Will Turn Off "Dancing Ants" From Copied Cells
