Math 220: Linear Algebra
Spring 2024 in 17-101, M — F: 10-10:50 am (Class Number #34140)

Spring 2024 in 17-101, M —Th: 11-12:05 pm (Class Number #41439)
Syllabus

Instructor Information
i Instructor: Dusty Wilson
il. Office: 26-306
iii. Phone: 206-592-3338
iv. Office Hours:
e Monday: 9-9:50 am (26-306)

e Tuesday: 8:30-9:50 am (MRC, 25-6), 12:15-1:30 pm (26-306)
e  Wednesday: none
e Thursday: 8:30-9:50 am (MRC, 25-6)
¢ Friday none
v. home page: http://people.highline.edu/dwilson
Vvi. e-mail: dwilson@highline.edu

Course Description _
Introduction to Linear Algebra: Row operation, matrix algebra; vector spaces, orthogonality, Gram-
Schmidt orthogonalization, projections, linear transformations and their matrix representations,
rank, similarity; determinants; eigenvalues, eigenvectors, and least squares.

Student Learning Qutcomes

1. Solve systems using Gauss-Jordan elimination.
ii. Identify and orthogonalize the basis of a vector space.
iii. Apply matrix methods to model a data set using least squares regression.
iv. Calculate and interpret the eigenvalues and eigenvectors of a matrix.
V. Identify, create, and apply linear transformations using matrix methods.
vi. Construct a mathematical proof.
Text
Linear Algebra and its Applications, 6" ed. by Lay, Lay, and McDonald.
Prerequisite
Math 152 with a minimum grade of 2.0.
Calculators
A graphing calculator is required for this course.
i. The TI-84 calculator is recommended. The use of symbolic calculators may not be allowed

during assessments/exams. Furthermore, the use of all calculators may be prohibited during
some assessments/exams (forewarning will be given).

il. Very limited class time will be spent explaining the use of calculators.

iil. Calculators may be rented from the Math Department through the Library.
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Canvas
1.
1.

iil.

Nothing is submitted through Canvas
Reminders of when things are due are available through Canvas (except HW/Quizzes
which are only listed in MyLabs or on the course calendar).
Grades are available in Canvas.

Homework and Quizzes
Homework and Quizzes will be assigned on MyLabs online. It is important that you use the online
resources to learn the material, and not just “get problems right”. Keep an organized notebook of
your work, clearly labeling the section and problem number, etc. so you can review your work as
it will be helpful on Assessments and in studying for the Final Exam.

i.
ii.

Projects
i.

ii.

1ii.

You will have five attempts on each/most homework questions.

Quizzes are timed and short. The questions parallel the homework assignments. You may

attempt each quiz three times, but are allowed only one attempt at each question.

e If vou get quiz questions right. the homework is sometimes personalized so that you
don’t need to do that part of the homework.

e  You don’t have multiple attempts on quiz questions.

There will be four projects assigned during the quarter. The projects are designed to give
you a better grasp of the graphs and pictures of linear algebra.

Some will be individual efforts and others may be worked as a small group.

If you miss a project, a score of 0% will be assigned.

Slack As51gnments

1.

ii.

iii.

iv.

We will use Slack to communicate, share work, coordinate schedules, and for reminders.

Slack is sort of like Discord or GroupMe, but is often used in professional settings which

is why I’ve chosen to use it. Other classes use discussion boards, we are using Slack.

Slack: There are four channels we will use on Slack.

e General: This is where I will make announcements and you should ask general ques-
tions about the class (i.e., What sections are on the Assessment?).

e Homework: This is where you will post questions and answers to homework questions.

e Study groups: This is where you can post about upcoming study groups.

e Random: You can post about club meetings, off campus gatherings, and fun stuff.

At least once each week you will make a post on Slack regarding homework. This can be

a homework question, homework solution, or a response to a classmate’s question.

e These are graded for completion.

e There is a 5% bonus for asking a question and a 10% bonus if you respond to a class-
mate’s question.

e Take a screenshot of your response (including your name and date). Save it as a pdf,
and upload this into Gradescope.

e You will be posting homework questions/responses. This is also where 1 will make
announcements and can best be asked questions outside of class.

Slack assignments will be submitted in Gradescope.

e One assignment score will be dropped.
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Discussion Seminars

1. There will be an opportunity to read an article or watch a video related to math, philosophy,
history, studenting, etc. You will respond in writing to provided prompts and then discuss
the article/video and your writing with your peers.

ii. Half the credit in this category will be for preparation for the seminar (measured through
the electronic submission) and the other half for attendance (measured through bringing
printed/typed notes to class).

1. One assignment score will be dropped (but not the Letter to a Future Student).

iv. Discussion Seminar 0 is an outlier and simply exists to help make sure you can interact
with the various (and sometimes confusing) technologies we will use in this class.

Notes/Slack/Discussions submitted via Gradescope

i. Handwritten work will be submitted (and returned) through a free program called Grad-
escope. It is similar to uploading into Canvas, but is designed for math/science classes and
so casier for me to administer.

il. Once each week you will scan your class notes and upload the pdf into Gradescope.

e These are graded for completion.
e  One score will be dropped.

iit, Weekly Slack Assignments (explained previously) are submitted via Gradescope.

v: Discussion Seminar notes (explained previously) are submitted via Gradescope. These are
due before class to encourage you to be prepared for the discussion and also to provide an
electronic backup should you forget to bring the printed copy.

Assessments
There will be (near) weekly assessments:
1. The assessments will be cumulative, but will emphasize recent material.
il. The length/value of the assessments will vary but will typically be about 30 minutes.
1ii. Your lowest assessment score will be dropped if vou attend 60%+ of the class davs where
attendance is taken.
iv. All assessments must be taken during the scheduled class time.
e Other arrangements can be made under special circumstances.
\2 Spoken and written communication as well as sharing of calculators during exams is pro-
hibited.
Final Exam

Errors

A comprehensive final exam will be held in the regular class meeting room. See the quarterly class
schedule for dates and times. The final exam is mandatory and a grade of 0.0 may be assigned at
the instructor’s discretion to those who fail to take the final exam.

I am human and fallible. If you find possible typos or math errors in printed material, videos, or
that were made in class, please let me know. If these are in print materials or video, please DM me
in Slack and make sure to include a screen shot and link so that I can easily find the mistake and
fix it. Sometimes there is extra credit when errors are pointed out. I’'m also a sensitive soul ... so
please be considerate when pointing out possible errors.
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Working remotely and illnesses
It is a brave new world where we face new challenges such as Covid-19 while also having many
new tools and skills in the areas of teaching and learning:

1
1.

1.

v.

Attending class in person is a good thing.

Lessons will generally be available online:

e For when you are sick and unable to attend class & .

e For when you want to review a lesson @ .

e For when you can’t (or don’t want to) make it to class C.

e For when face-to-face class is cancelled because I am sick or otherwise unable to
teach @ .

Assessments, exams, and discussion seminars must be attended face-to-face. Plan accord-

ingly. These cannot be completed remotely.’

Because assessments must be completed in person, one score will be dropped if your at-

tendance score is at least 60%. Special circumstances can be addressed on a case-by-case

basis.

I Perhaps it goes without saying, that remote options would be available should on campus classes be cancelled.
Similarly, please talk to me if you have a prolonged illness (or the like).
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Grading

Homework: 4%

Online quizzes: 4%
Attendance: 2%

Slack Assignments: 2%
Discussion Seminars: 2%
Class notes: 2%

Project: 4%
Assessments: 50%

Final Exam: 30%.

GPA’s will be given according to:

95-100% 4.0 %% GPA | %%% GPA | %%  GPA | %%  GPA
93-4% 3.9 81% 3.1 3% | 2.3 65% 1.5 57% 0.7
91-2% 3.8 80% 3.0 72% 2.2 64% 1.4 0-56% | 0.0
89-90% 3.7 79% 2.9 1% 2.1 63% 1.3
87-8% 3.6 78% 2.8 70% 2.0 62% 1.2

| 85-6% 3.5 77% 2.7 69% 1.9 | 61% 1.1 _

| 84% 34 | 76% | 2.6 68% 1.8 60% 1.0 [
83% 3.3 75% 2.5 67% 1.7 59% 0.9
82% 3.2 74% 2.4 66% 1.6 58% 0.8

Policies and Notes

1.

ii.

ii.

iv.

vi.

Attendance: You are responsible for all material covered in class including all announced
changes to the schedule and assigned course work. (If you miss class, you are still respon-
sible for everything in class).

Devices: The use of non-human smart gadgets in class is discouraged (except when re-
quested). Smart non-human devices are banned during assessments and tests.

Math Resource Center: Cost-free mathematics tutoring is available at the MRC. The
MRC is located on the sixth floor of the library (Bldg 25). "
Faculty Advising: Highline College instructors are a wonderful resource for students at
any stage of the academic process. Many Highline instructors have career experience, are
knowledgeable about campus resources, and can assist students in reaching their educa-
tional goals through degree planning. If you have an advising question, feel free to ap-
proach your instructor. If your instructor cannot answer your question, s/he will help you
find someone who can.

Honors: Highline College offers opportunities for students to participate in an Honors Pro-
gram tailored to their pathways. Students who fulfill all Honors Program requirements may
become eligible for a scholarship during their final quarter and receive recognition at High-
line’s commencement ceremony.

If you are interested in the Honors Program, I invite you to pursue an honors project in this
class. Please approach me within the first three weeks of the quarter, and we will work
together to develop a plan for completing an advanced academic or professional project.
After completing the project and earning a 3.5 GPA in this course, an “honors” notation
will appear on your official Highline transcript.

Academic Dishonesty: Cheating, plagiarism, and other forms of academic dishonesty are
unacceptable at Highline College and may result in lower grades and/or disciplinary action.
It is both your right and responsibility to be familiar with the document entitled: Student
Richts and Responsibilities code WAC 1321-1210 adopted by the Board of Trustees of
Community College District 9 on December 13, 2007. This is available in the counseling

center.
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vii.

viil.

ix.

Access Services: Your experience in this class is important to me. If you have already
established accommodations with Access Services, please communicate your approved ac-
commodations to me at your earliest convenience so we can discuss your needs in this
course. If you have not yet established services through Access Services but have a tem-
porary health condition or permanent disability that requires accommodations (conditions
include but are not limited to; mental health, attention-related, learning, vision, hearing,
physical or health impacts), you are welcome to contact Access Services at 206-592-3857,
access@highline.edu or access.highline.edu. Access Services is located on the 5th floor of
the Library, Building 25, Room 531. _
Emergency Procedures: In the event of an emergency, follow your instructor’s direc-
tions. If you are told to evacuate the building, take your valuables because you may not be
allowed to re-enter. Do not leave campus until your instructor or another campus official
tells you to do so. If you may need assistance evacuating, notify your instructor today. To
prepare yourself for an emergency, review the evacuation map on the last page of the emer-
gency placard in your classroom and subscribe to HC Alert at https:/hctextalerts.high-
line.edw/).

Final Exams: Your completed final exam will not be returned to you. It belongs to the

instructor. However, you may (and should) review your final exam by stopping by the

instructor’s office the next quarter.

School Policies:

i The Student Richts and Responsibilities Code: A legal document that describes
college expectations, students' rights, and outlines the process for resolving disci-
plinary matters and Code violations. http://studentservices.highline.edu/srr.php

ii. The College Catalog: Lots of fine print about grades, deadlines, and resources can
be found in the catalog at: http://catalog.highline.edu/

Important Dates (dates should be verified online):

i. April 5™: Last Day for 100% Tuition Refund

il. April 12™: The last day to drop without incurring a “W™

iii. May 24": The last day to officially withdraw with a “W”
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@) Pearson | MyLab | Math

Student Registration Instructions

To register for Math 220: Linear Algebra:

1. Go to https://mim.pearson.com/enroliment/wilson79457
2. Sign in with your Pearson student account or create your account.
For Instructors creating a Student account, do not use your instructor credentials.
3. Select any available access option, if asked.
» Enter a prepaid access code that came with your textbook or from the bookstore.
» Buy instant access using a credit card or PayPal.
» Select Get temporary access without payment.

4. Select Go to my course.

[$)]

. Select Math 220: Linear Algebra from My Courses.
If you contact Pearson Support, give them the course ID: wilson79457

To sign in later:
1. Go to hitps://mIim.pearson.com
2. Sign in with the same Pearson account you used before.

3. Select Math 220: Linear Algebra from My Courses.

Copyright © 2024 Pearson All Rights Reserved.
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Calendar - 11am

Date
4/1 Mon
4/2 Tue
 4/3 Wed

4/4 Thu

4/5 Fri

4/6 Sat

4/7 Sun

4/8 Mon

4/9 Tue
4/10 Wed
4/11 Thu
4/12 Fri
4/13 Sat
4/14 Sun
4/15 Mon
4/16 Tue
4/17 Wed
4/18 Thu
4/19 Fri
4/20 Sat
4/21 Sun
4/22 Mon
4/23 Tue
4/24 Wed
4/25 Thu
4/26 Fri
4/27 Sat
4/28 Sun
4/29 Mon
4/30 Tue

5/1 Wed

5/2 Thu

5/3 Fri

5/4 Sat

5/5 Sun

5/6 Mon

5/7 Tue

5/8 Wed

Topic MyLabs
Introductions, Thinking 1
Thinking 2
Thinking 3
1.1: Systems of Linear Equations
No class on Fridays
Weekend - No Class
Weekend - No Class
1.2: Row Reduction and Echelon Form
1.3: Vector Equations 1.1 HW & Q
1.4: The Matrix Equation Ax=b 1.2HW & Q
Assessment 1 (1.1-2), Discussion Seminar |
No class on Fridays
Weekend - No Class

Weekend - No Class 1.3 HW &Q
1.5: Solution Sets of Linear Systems -

1.7: Linear Independence 1.4 HW & Q
1.8: Linear Transformations 1.5 HW & Q

1.9: Matrix of a Linear Transformation
No class on Fridays
Weekend - No Class

Gradescope

Discussion Seminar 0

Slack 1 and Notes 1 (1.1)

<- HW = MylLabs homework
and Q = MyLabs quiz

Slack 2 and Notes 2 (1.2-1.3)

Project 1 due

Weekend - No Class 1.6&7 HW & Q Slack 3 and Notes 3 (1.4-1.7)
2.1: Matrix Operations 1.8 HW & Q
2.2: Inverse of a Matrix 1.9HW & Q
2.3: Characteristics of Invertible Matrices 21HW & Q

Assessment 2 (1.3-9), Discussion Seminar Il
No class on Fridays
Weekend - No Class

Weekend - No Class 22HW &Q
3.1 & 3.2: Determinants

4.1: Vector Spaces and Subspaces 23Q
4.2: Null Spaces, Column Spaces, and Linear Transformations 3.1-2HW & Q

Assessment 3 (2.1-3), Discussion Seminar il
Equity Day - All classes cancelled
Weekend - No Class

Weekend - No Class 41 HW & Q
4.3: Linearly Independent Sets; Bases

4.4: Coordinates 4.2 HW & Q
4.5: Dimension and Rank 4.3 HW & Q

Slack 4 and Notes 4 (1.8-2.2)

Slack 5 and Notes 5 (2.3-4.1)

Tentative and subject to change




LINEAR ALGEBRA PROJECT
Part 1: Span

Instructions: You will be given two vectors in for R from which to make a new parallelogram grid
(on top of an ordinary Cartesian grid). You will also be given two vectors to locate on the two grids.

0. Put your name and project number at the top of each page. Your work
throughout should be neat ... very neat and organized. Work on graph paper.

1. Graph ¥, inred and ¥, in blue.

2. Create a parallelogram grid using v, and v,. (This is a foreshadow of B-

coordinates).

3. Treating the vector X like a position vector, how many ¥,’s and ¥,’s are

required to get to x. (This is a foreshadow of finding [¥], given ¥).

4. Graph the vector that is units in the v, direction and units in the ¥,
direction. Label this point as y and find its coordinates on the Cartesian grid.

(This is a foreshadow of finding ¥ given [7],).

Submit your graphs and work via Gradescope






LINEAR ALGEBRA PROJECT
Part 2: Change of Bases

Instructions: You will be given a new basis for R?, avector X, and a specific transformation.

0. Put your name and project number at the top of each page. Your work
throughout should be neat ... very neat and organized.

1. Find the matrix 4 for the transformation.

2. Find T'(%) for this transformation.

3. Find [K]B

4. Find the transformation B.

5. Using 4, B, and P (aka F,), show that 4 and B are similar. To do this, you

need to actually multiply finding two products and showing that they are
equal.

6. Using graph paper and careful scaling, create an overlay “graph paper” with
the basis vectors from your new basis. Label your basis vectors and show ¥,

in red and ¥, in blue.

7. Graph [X], and [7(%)],on your new graph paper.

8. Clearly and carefully label [X], and [7(X)], with coordinates relative to the

new basis, and relative to the standard basis.
If you finish this early, you can check it with me prior to submission.

Submit your graphs and work via Gradescope.






LINEAR ALGEBRA PROJECT
Part 3: Four Major Subspaces

Instructions:

1. Read carefully through Part 3 and 4 of the project.

2. The math on paper

a.

Create a non-trivial 3x3 matrix A4 that is not invertible (this should not
match an example in the book). A4 should have two linearly independent
TOws.
Find bases for:
i. The row space of 4 (you may need to look up the row space)

ii. The image of 4

iti. The kernel of 4, and

iv. The kernel of AT (you may need to look up the transpose)
Check with me to make sure your A and these bases are correct. It is nice
to know the math is right before you begin to build.

3. Model 1: Row space and kernel

a.
b.

Put your name(s) on your models

Build a 3D model using your ingenuity and creativity that shows the row
space, kernel, and the relationship between the subspaces.

This should be built to scale with labeled axes (label x, y, z and also the
scale 1,2, 3,...)

Make sure all vectors and subspaces are clearly labeled.

Note: Should you find it helpful, it is acceptable to adjust your matrix 4 to
allow for easier modeling.

Hint: You may find it helpful to look at the grading rubric to see what I am
looking for.

4. Model 2: Image and the transpose of the kernel

a.
b.

Put your name(s) on your models

Build a 3D model using your ingenuity and creativity that shows the
image, transpose of the kernel, and the relationship between the subspaces.
This should be built to scale with labeled axes (label x, y, z and also the
scale 1,2, 3,...)

Make sure all vectors and subspaces are clearly labeled.



LINEAR ALGEBRA PROJECT
Part 3: Four Major Subspaces

Rubric:

1.

Create a matrix 4 that is not invertible (this should not match an example in the
book) size 3x3.
a. 0 points

Find bases for the row space of 4, image of 4, kernel of 4, and kemel of AT
a. 1 point for each subspace.
b. -0.5 if a redundant vector
c. -0.5if span is used incorrectly

Suggestion: Check your A and subspaces with me prior to beginning to build.

By the deadline have two displays (3D models), one with row space and kernel of
A indicated, and another with the image of 4 and the kernel of AT indicated.
a. Display 1: row space and kernel of 4
Correct vectors
Orthogonal
Span

b. Display 2:image of A and the kernel of A7
Correct vectors
Orthogonal
Span

5. Late submissions will be accepted within reason, but will have 2 points deducted

from their final score.

Total points = 10



LINEAR ALGEBRA PROJECT
Part 4: Projections and Orthogonal Bases

Instructions: This project asks that you add to your previously constructed 3D models.

1. On Model 1 (row space and kernel):

a. Choose a vector X that does not lie in either the row space or the image.

i. Hint: A careful choice of x can make the subsequent projections
easy to find/graph. ‘
b. Find the projection of this vector onto the basis vectors for the row space
and find the projection of this vector onto the basis vector for ker(4).

c. Add the vector and its projections to Model 1.

i. Label all four vectors!

2. On Model 2 (image and kernel of the transpose):
a. Create an orthonormal basis for your image of 4.
b. Add these two vectors to Model 2.
i. Check your work making sure to label all vectors!

3. On Model 2 (image and kernel of the transpose):
a. Using the same basis you used last time for the row space of 4 create a
vector, v, such that v is the linear combination of the basis vectors:

v=b+2b,. Let T: R — R* be such that 7 (V)= 4y
i. Find 7(b,), T(b,), and T(¥)
ii. Write T(V) as a linear combination of 7 (51) and T (52)
111, Put all three vectors from part (ii.) on the model of your image. If
they don’t fit on your model, scale them down and label them

accordingly.
1. In any case, label the vectors.






1.1: Systems of Linear Equations
Math 220: Linear Algebra

Linear Equations

of the variables X;5 Xy 50445 X, has the form

ax +a,x,+..+a,x,=b

Where b, a,. a,, ..., 4, arereal or complex numbers.

Ex 1: Circle the linear equations, and state why the non-linear aren’t linear.

a) 3x,—x,=5x, b) 4x,+5= [x
c) x;—4x, =xx, d)—2x, +7x2—7rx3=x/§-
A is a
collection of one or more linear equations with the same variables. For example
3x,—x,—4x,= 3
X, =Sx;=-2

A of a system is a list of numbers (sl,sz,...,sn) that

make every equation of the system true, when each S, is substituted for X -

3x1 —xz —4x3 = 3

Ex 2: Verify that (3,2,1) is a solution to the system .
| X, —=Sx,=-2

The set of all possible solutions is called the

Ex 3: Find another solution to the system from Ex 2.
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1.1: Systems of Linear Equations

Two systems are considered if they have the same
solution set.

From 2 dimensional systems of equations in algebra, we should remember that there
are 3 possibilities for the number of solutions to a system.

%—h—-&—i—l—x, ot
: 1 3 4 /

& # g

A system of linear equations has
1. no solution, or
2. exaclly one solution, or
3. infinitely many solutions.

A system is called _ if it has at least one solution, and
if it has no solutions.

Matrix Notation

We will represent a system of equations by its coefficientsin a

X, _3x3 = 8 will be re-written as the
2x1 + 2x2 +9x3 = 7 matrix
X, + Sx3 =-2
The of a matrix tells
how many and
a matrix has. matrix

An mXn matrix has
and
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1.1: Systems of Linear Equations

Solving a Linear System — We are going to describe an algorithm for solving linear
systems, which replaces one system with an equivalent one that is easier to solve.
Since they are equivalent, they have the same solution set.

Ex 4: Solve the system , Three Operations we can use:
x, —-3x,= 8
2% +2x,+9x,= 7
X, +5%, =—2
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1.1: Systems of Linear Equations
Elementary Row Operations
1.{Replacement) Replace one row by the sum ofitself and a multiple of another row.
2. {Interchange) interchange two TOWS.
3. (Scaling) Multiply all enfries in a row by 2 nONZeT™ constant.

Two matrices are called if there are a
sequence of elementary row operations that transform one matrix into the other.

If two systems are row equivalent, they have the same

Two Fundamental Questions About a Linear System
1. Is the system :aﬂﬁistent; that is, does at least ane solution exist?

2.f a solution exists, is it the only one; that is, is the solution unigue?

Ex5: Determine whether the systems are consistent or inconsistent. Do not fully

solve.

o+ 4xz = —b
zy + 3x9 + Brg = -2
3y + Txo+Txz = O

Page 4 of 5



1.1: Systems of Linear Equations

Ex 6: Determine whether the systems are consistent or inconsistent. Do not fully

solve.
Il + 3x3 = 9
T2 —3zy = 2
— 2r9 4+ dzg + 22y = 1
dzy + Tzg = —5
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1.2: Row Reduction & Echelon Forms
Math 220: Linear Algebra

Definition

A rectanguiar matrix is in ecine;nn form {(or row echelon form) if it has the following three properies;
1. All nonzero rows are above any rows of ali zeros.
2. Each leading entry ofa row is in a column fo the right of the Teading entry of the row above it
3. All entries in & column below a ie;adiing emry are Zerns.

ifa matrix in-echelon form satisfies the following additional conditions, then itis in reduced echelon form {or
reduced row echelon form):

4. The leading entry in each nonzero row is 1.

5. Each leading 1 is the only nonzero enfry inifs column.

The following matrices that we saw in section 1.1 are in

1 35 =2 1 00 5
014 -5 010 3
000 2 001 -1

Ex 1: Here are matrices in B as s (0 B % % % % 2 % % 3]

. OW % G 00 M % % 3 £ 2

‘ '+ |0 0O OB % % = % =

_ gggg ¢ 00 0 0B s 2 = @

Echelon Form ‘ (0 00 0D 0 0O0OM &«

P O = (0 1 = 0 0 0 = = 0 %)

fﬂsl*‘ 00016060+« 50 =

_ o_ﬂﬂn,ﬂﬂﬂ-ﬂlﬂ:tn*

Reduced Echelon Form 0oool [290001« =204

0 00000001 »

Nonzero matrices can be row-reduced into many different matrices in Echelon form.
However, the Reduced Echelon Form of any matrix is unique — there is only one.
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1.2: Row Reduction & Echelon Forms

Theorem 1 Uniqueness of the Reduced Echelon Form
Each mairix is row equivalent o one and only one reduced echelon matrix.

Definition
A pivot position in a matrix A is a location in A that corresponds fo a leading 1 in the reduced echelon formof 4. A
pivot column is a column of A thatcontains 2 pivot position.

Ex 2: Row reduce the matrix to echelon form, and locate the pivot columns.

31 -18 -5 4 4
11 2 3 11
11 -8 -1 0 0
12 -1 4 -5 -5
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1.2: Row Reduction & Echelon Forms

Ex 3: Use elementary row operations to transform the following matrix into echelon
form and then reduced echelon form.

2 4 3 4 -11 28
-1 2 -1 2 5 -13
0 0 31 6 -10
3 -6 10 -8 -28 61
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- 1.2: Row Reduction & Echelon Forms
Forward Phase vs. Backward Phase
Solutions of Linear Systems

Ex 4: (revisited) Looking at the reduced echelon form of the matrix from Ex 3, we can
describe our solution set to the corresponding system of equations to this. augmented

matrix.

1200 2 3

0 010-1 2 >

0001 3 4

00000 O]
The variables that are arbitrary, this text calls variables, and the others that
rely on those- variables or are fixed are called variables.

Ex 5: Find the general solution of the linear system whose augmented matrix has
been reduced to

1
0
0

o - O

-2 4 3
3 -12
0 0 1

N = W
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1.2: Row Reduction & Echelon Forms

Theorem 2 Existence and Uniqueness Theorem
A linear system is consislentif and only if the rightmost column of the augmented matrix is nota pivot column—that
is, ifand only if an echelon form of the augmenied matrix has no row of the form

[0 --- 0 ]  withb nonzero

Ifa finear system is consistent, then the solution set contains either {i) a unique solution, when there are no free
variables, or {ii) infinitely many solutions, when there is atfeast one free variable. :

Ex 6: Determine the existence and uniqueness of the linear systems represented by
the augmented matrices that we’ve seen over the last two sections.

a) (1.1, #4)
1 00 5
010 3
001 -1

b) (1.1, #5)
135 -2
014 -5
000 2

c) (1.2, Ex 3 revisited)

: |
OOON
OC—= OO

SO
SO Mo
OUJLN
o Lvw
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1.2: Row Reduction & Echelon Forms

Using Row Reduction to Solve a Linear System
1. Write the augmenited matrix of the system.

7. Use the row reduction algorithm to obiain an equivalent augmented mafrix in echelon form. Recide whether the
sysfem is consistent. If there is nio solution, stop; ptherwise, go to the nextstep.

3. Confinue row reduction o obtain the reduted erheion form.
4. Write the system of equations cormesponding {0 the matrix obtained in step 3.

5. Rewrite each nonzero equation from step 4 so thatifs one basic variable is expressed in terms of any free
variables appearing in the equation.
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1.3: Vector Equations
Math 220: Linear Algebra

Vectors in R2
or

A matrix with one column is called a

Vectors are ._if and only if the corresponding entries are equal.

The sum of the vectors wand Vvis the vector

The scalar multiple of vector. w by a real number c is the vector cw where each

of wis multiplied by c.

3 ] and V= [‘-IJ. find
4

Ex1: Given u =[

a) utv
b) 3u
¢) 2u-5v

Geometric Descriptions of R?

%

*(2,2) 2.2

‘G.-1)

2 & ’ , [
2,1} G.-1 -2,-1)
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1.3: Vector Equations

Parallelogram Rule for Addition

FuandvinR? are represented as points | in the plane, then v + v coresponds m the fourth vertex of the
paraliemgram whose other vertices are ©, 0, and v. See Figure 3.

)

ol &Y

p /o -
1 T[4 A
Ex2: Givenu= and V=| |, ‘ 5
draw their vectors and the following. 3
a) u+v | s
2
- -
b) 3u 16 |5 43|23 1] 2| 3] 4] 5| 6
-2
-3
c) ‘—%V f -4
"na
Vectors in R3
. TR
%3 Vectors in R” %
u
< | u=|"2
28 \_un_
¥ The Zero vector has entries of all zero,
X, v 7““‘4‘3 denoted by O or
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1.3: Vector Equations
‘Algebraic Properties of R™
Forall u, v, win R™ and ali scalars cand o
(ln+v=wv+4u
i) (u+v)+w=u4(v+w)
fiiju+0=04+u=1u
{iv)u + (—u) = —u+u = 0, where —u denoles {(—1)u
Wic(u+v) =cu+ev
Wi{c+dju=cu+du
{viie (dn) = (ed)u
wiij1u = u
Prove (i)
Claim: utv=v+u

Proof.

Let u,ve R” be given.

Therefore u+v=v+u.
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1.3: Vector Equations

Prove (v)

Linear Combinations
Given veclors vy, Va,. .., ¥p in B® and given scalars ey, 2. .. ,Cp, the vector y defined by

Y=avi+--+g¥p

is called a finear combiration of vy, ..., vy with weighls ¢,...,cp.

Ex 3: The figure identifies selected linear combinations of v, =[_ﬂ and v, =[ﬂ
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1.3: Vector Equations

Ex 4: Determine whether b can be written as a linear combination of él,az,as.

1 e
ay=|-2|,82=|1
0 2
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1.3: Vector Equations

Aveclor equation
zy83 + 2383 + -+ + Tply = b
has the same solution set as the linear system whose augmented matrixis
s @ -+ 3. B {s)

in particular, b can be generated by a linear combination of ay,... 8y, ifand only if there exists a solution to the
linear system corresponding fo the matrix {5).

Definition

£¥1,...,¥yp arein R®, then the setofall linear combinations of ¥y,...,Vy & denoted by Span {¥1,...,¥p}
and is called the subsetof R® spanned {or generated) by vy, ..., ¥p. Thatis, Span {¥1,...,¥p} isthe
collection of ail vectors that can be written in the form

vy +ce¥e+ -+ ¥y

with ey, . .. ,&p SC3lATS.
be Span{vl,vz,...,vp} means:

Every scalar multiple of individual vectors, CV,

Geometric Description of Span {V} and Span {u,v}

X3
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1.3: Vector Equations

1 3 —1
Ex5: Leta = 3 |, a,=/10 ,andb=| 4 |. Span{al,az} is a plane in R3,
-2 —4 2 :

Is b in that plane?

[ 1 —3
Ex6: Letvy = 0|, ,va= 1|, andy =
—~2 g

For what valué-(sj of his yin the plane éenerated vby vi and vZ?_"
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1.4: Matrix Equations
Math 220: Linear Algebra

Definition A |
fAisan m x n malrix, with columns @y, . .., &, and ifxisin K™, then the produict of A am x, denoted by Ax,

is the finear combination of the columns of A using the corresponding entries in x as weights; thatis,

Ty
Ax=|ay; az --- a,] [ : J = Z383 + ZTaBy + -« + ZpBy,
Ty
Ax is only defined if the number of of A equals the number of

in x.

Ex 1: Calculate the product Ax=b

]

2x3

J3x1

2x1
3x2
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1.4: Matrix Equations

Ex2: For U,,0,,U;€ IR3 Write the linear combination of 5u;, —u,+2u, as a

matrix times a vector.

Ex3: Write the system of equations  3x, —x, —4)63 =3 asa
X, —Sx,=-2

a) Vector Equation

b) Matrix Equation

c) Augmented matrix
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1.4: Matrix Equations
Theorem 3
HAis an m % n matix, with columns 8;,...,8,, and ifbisin K™, the matrix equation
Ax=b (9)
has the same solution set as the vector equation
Z18 +ze83+ -+ Tn8p = Db {5)
which, in turn, has the same solution set as the system oflinear equations whose augmenied matrix is

[ay a3 <+~ a, b] (6)

The equation AX=Db has a solutions if and only ifb is a
of the columns of A.

1 -3 4 b
Ex4: Let A=(-3 2 6 |andb= b2 . Is the equation 4Ax=Db consistent for all
5 -1 -8 b3

possible bl,bz,b3 ?
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1.4: Matrix Equations

Theorem 4 |
Let Abe anm X n matrix. Then the following statements are logically equivalent
they are all frue statements or they are all false.

a. Foreach bin B™, the equation Ax — b has a solution.

b. Each bin B™ is a linear combination of the columns of A.

c. The columns of A span R™.

d. A has a pivot position in every row.

(Caveat/note: In Theorem 4, A is a coefficient matrix, not an augmented matrix.)

1 4 -1 X,

Ex5: Compute Ax=b for A=|2 0 -3|and X=|X, .
-3 -2 5 X,

Row-Vector Rule for Computing Ax

ifthe product Ax is defined, then the 7 th entry in Ax is the sum of the products of corresponding entries from row |
of A and from the vector x.

Ex 6: Compute

1

1 =2 3
a){ }2:
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. 1.4: Matrix Equations

S~ o
- O O
RIS RN
Il

(This is called the matrix, denoted by /)
If 1, represents nxn identity matrix, then /,X =X for every X R”

Theorem § |
FAisanm x n matrx, #and v are vectors in R™, and cis a scalar, then:

a A(u+v) = Au+ Av;
b. A(cu) = c(An).
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1.5: Solution Sets of Linear Systems
Math 220: Linear Algebra

if it can be
solution

A system of linear equations is called
written as Ax=0 Such a system always has the

The important question is whether or not there is a
solution to a homogeneous system.

Since there is always a trivial solution, there is a non-trivial solution if and only if there

is at least one

Ex 1: Determine whether the following has a non-trivial solution, and if so, describe

the solution set.

22y — 529 + Bz =0
—22y —Txa 4+ z3=10
dry + 229 + Tz =0

Ex 2: Describe all the solutions of the homogéneous “system”.

3xl —4x,+5x,=0
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1.5: Solution Sets of Linear Systems

The prévious example demonstrates how we can write solutions in Parametric Vector
Form. X=su+v (s,te R)

Solutions of Nonhomogeneous Systems

I 3 1 1
Ex 3: Describe all solutions of Ax=b. A=-4 =9 2 |and b=|-1
0 -3 -6 -3

asa

The solution set of Ax=b is a line through P to the

solution set of
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1.5: Solution Sets of Linear Systems

;T.”-..EQRE,M 5

the : ﬂ:-bﬁeﬂmnt{ormgmb udhtyb;a ;

*3

|
Claim (the first part of Theorem 6): Suppose that p is a solution of Ax=b, so that
Ap=b. If v, is any solution to the homogeneous equation Ax=0 and w=P+v, then w

is a solution to Ax=b.

Process: Writing a solution set (of a consistent system) in Parametric Vector Form.
1. Row reduce the augmented matrix io reduced echelon form.
2. Express each basic variable in terms of any free variables appearing in an
equation.

3. Write a typical solution x as a vector whose entries depend on the free
variables, if any.

4. Decompose X into a linear combination of vectors {with numeric entries)
using the free variables as parameters.
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1.5: Solution Sets of Linear Systems

Ex 4: Each of the following equations determines a plane in R3. Do the two planes
intersect? If so, describe their intersection. .

1+ 4z9 — 523 =10
27y — zo+ By =9

Ex5: Write the general solution of 10z1 — 3xs — 223 = T in parametric vector form,

1.6 — Applications (read/review Network Flow as well — pages 53 —54 )
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1.5: Solution Sets of Linear Systems

Balancing Chemical Equations |
Chemical equations describe the quantities of substances consumed and produced by
chemical reactions. For instance, when propane gas bums, the propane (C3Hs)
combines with oxygen (Oz) 1o form carbon dioxide (COz) and water (H20),
according to an equation of the form ‘

(z1)CaH; -+ (22) 02 — (23) CO2 + (24) H20 (4)
3 0] 1 07 « Carbon
C3Hg : [SJ ,02: [0},0021 [{)},HZO: [2] + Hydrogen
0 2 2 1] « Oxygen
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1.7: Linear Independence

Math 220: Linear Algebra

Definition

An indexed set of vectors {vy,...,v,} inR” is said to be linearly

independent if the vector equation :
Tivi+Zave+- -+ 2pvp =0

has only the trivial solution. The set {v,...,v,} is said to be linearly
dependent if there exist weights ¢;, .. ., ¢, not all zero, such that

avi+evet---t+gvy = 0

Ex 1: Determine whether the set {Vl,vz,v3} is linearly independent. If not, find a

linear dependence relation among V,,V,, and v,.

1 4 2
v, = 2 ,V,=|5 ,andv3= 1
3 6 0
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1.7: Linear Independence

The'i:ulumns of a matrix A are linearly independent if and only if the
equation Ax — @ has only the trivial solution. -

1 2 1
Ex2: Determine whether the columns of the matrix A= 2 1 —1| are
linearly independent. -3 1 =2

Ex 3: Are these sets linearly dependent (LD) or linearly independent (LI) and why?

The set LD or LI | Why?
{V}, not the zero vector

0

1243
B
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1.7: Linear Independence

A set of two vectors {vy1,va} is linearly dependent if at least one of
the vectors is a multiple of the other. The set is linearly independent if
and only if neither of the vectors is a multiple of the other.

Theorem 7 Characterization of Linearly Dependent Sets
An indexed set S = {v,...,vy} oftwo or more vectors is linearly

dependent if and only if at least one of the vectors in S is a linear
combination of the others. In fact, if S is linearly dependent and
vy # 0, then some v; (with § > 1) is a linear combination of the

preceding vectors, v1,...,vy_;.

Proof:
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1.7: Linear Independence

Ex 4: Given the set of vectors {u,V,W}e R3 with W and V linearly independent,
explain why vector W is in the plane spanned by U and v if and only if»{u,V,W} is

linearly dependent.

Theorem 8
If a set contains more vectors than there are entries in each vector, then the set is
linearly dependent. That is, any set {v1,...,vp} in R" islinearly dependent if p > n.

Proof:

Ex5: Using Theorem 8, create a set of vectors in R3 that is linearly dependent, and
don’t automatically make some of the vectors obvious multiples or combinations of
the others.
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1.7: Linear Independence

. Theorem 9 |
Ifaset§={vy,...,vp} inR™ contains the zero vector, then the set is linearly dependent.

" Proof:

Ex 6: Determine by inspection if the give set is linearly dependent.
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1.7: Linear Independence
Ex 7: Network flow exercise from 1’.'6__(we' did a chemistry example previously).

a) Find the general traffic pattern in the freeway network shown in the figure.
(Flow rates are in cars/minute)

b) Describe the general traffic pattern when the road whose flow is X, is closed.

c¢) When x, =0 , what is the minimum value of X ?
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1.8: Linear Transformations
Math 220: Linear Algebra

and the vector equation

While the matrix equation
are essentially the same except for notation,

there is a case where the matrix equation represents an action on a vector that isn’t
directly connected with a linear combination of vectors. '

(17 [ 1

1
[4 -3 1 3] 1 [} [4 -3 1 3] 4 l
: = and | = {
2 0 5 1)1 (2 0 5 1]]|-1
-I.J L 3.
t ] t
A i b A &

Does this picture look familiar from other math you’ve seen?



1.8: Linear Transformations

A Tfrom RY to RM is a rule that assigns each
vector x€ R¥to a vector T (x)e R .

The set RY is called the of T.

The set R is called the . of T.

For x€ R¥, the vector T'(x)e R¥ is called the

The set of all T (x)

is called the of T.

Domain Codomain

Review Ex. 5 on page 68 of a Rotation Transformation.
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1.8: Linear Transformations

1 -3 9 3 3
Exl: LetA=| 3 & ,'u=l 1],b= 2|l,e= |2},
fi 7 s -5 5

define a transformation 7": R? — R? by T'(x) = Ax, so that

1 -3 N T — 3z
T(x) =Ax = 3 5 | L:] = | 3x1 + 5x0
1 7]t —21 + 7o

a. Find T'(u), the image of u under the fransformation 7,

b. Find an x in R? whose image under Tis b.
¢. Is there more than one x whose image under T is b?

d. Determine if ¢ is in the range of the transformation 7.
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1.8: Linear Transformations

00

1 0|, thenthetransformation x -+ Ax projects points in R® onto the
00 N

71,Te-plane because 3

4
Ex2: fA= |9
0

1 3 |
Ex3: Let A= [0 ] . The transformation T : R2 — R? defined by T'(x) = Ax is

called a

For the image below, let’s look at the transformations of the vectors B},[g} and B}
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1.8: Linear Transformations

Definition
A transformation {or mapping) T is linear if:

() T(u+v)="T(u)+ T(v) foralu,vinthe domain of T |
(i} T (cu) - cT'(u) for all scalars ¢ and all u in the domain of T.

Since the above properties are true for all matrices, then every
transformation is a transformation. (Though the reverse is not true.)

Furthermore, (mini proof)
If Tis a linear transformation, then |
T(0)=0
and
T (cu+dv) = T (u) +dT (v)
for all vectors u, v in the domain of T and all scalars c, d.

The second property here actually can be generalized to
T(ervi +-+++ ) = aT(va) + -+ GT(vp)

This is referred to as a : in
engineering and physics.

Ex4: Given a scalar s, define 77 : R* — R? by T'(x) = rx. Tiscalleda

when0<r<1anda

when r > 1. Let r =z and show that Tis a linear transformation.

T(cu+dv)=

A2
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1.9: Matrix of a Linear Transformation
Math 220: Linear Algebra

Ex 1: The columns of '12 =[1 ﬂ are € =[(1)J and e, =E)J Suppose Tis a linear

0
| 3 0
transformation from R2 — R3 such that T(e1)= 2 |and T(e’z)= -11.
) -5 9

Find a formula for the.image of an arbitrary xe R2.

This shows.us that knowing T(el) and T(ez) can give us T(X) for any xe R2. That

is, for all xe R2we have:

T(x) =[T(e1) T(e2)] LJ = Ax
Theorem 10 | |
Let T : R™ — R™ be a linear transformation. Then there exists a unigue matrix A such
that

T(x) = Ax forall xin R"
Infact, Aisthe m x n matrix whose j th column is the vector T'(e;), where e; is the jth
column of the identity matrix in IR™: '
A=[T(e;) --- Tl(en)] 3)

This Matrix A is called the
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1.9: Matrix of a Linear Transformation

Ex2: Find the standard matrix A for the contraction transformation T (X) =

N =

for xe R?.

Ex3: Let T:]R2 — R2 be the transformation that rotates each point in R? about
the origin through the angle ¢, with counterclockwise rotation for a positive angle

(see the figure). Find the standard matrix A of this transformation.

%3
TN
V4 AN
I'4 A Y

/ \¢ \

{ %

| ®
i {(1.0)
A i '
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1.9: Matrix of a Linear Transformation

Geometric Applications of Linear Transformations

Ex 4: Observe and discuss in the interactive ebook: (also, pages 74-76)

e Reflection

e Contraction & Expansion

° $hear

¢ Projection

The Theory of Linear Transformations
Definition

Amapping T : R® — R™ is said fo be onto R™ i each b in R™® is the
image of at least one x in R™.

of Tis all of the

Another way of saying this is that the

]Rm

T'is onte B™

T'is riot onto B
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1.9: Matrix of a Linear Transformation

Definition = » A .
Amapping T : R* — R™ is said fo be one-to-one if each b in R™ is the
image of at most one x in R™.

T is not one-to-one T'is cne-to-one

Theorem 11 |
Let 7" : B® — R™ be a linear transformation. Then T is cne-to-one if and

only if the equation T’ (x) = 0 has only the trivial solution.

Proof.
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1.9: Matrix of a Linear Transformation
Theorem 12
LetT : B™ - R™ be a linear transformation, and let A be the standard
matrix for T. Then:
a. Tmaps R® onto R™ if and only if the columns of A span R™;

b. T'is one-to-one if and only if the columns of A are linearly independent.

Proof.

Ex5: Let T be the linear transformation whose standard matrix is below (2 cases).
Determine whether they are “onto R3” and/or a one-to-one mapping.

1 =23 1 - 1 -2
a) A=|0 0 2 -5 b) B=|2 —4
0 0 0 4 3 5
Why? ~ Why?
onto R3?
one-to-one?
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1.9: Matrix of a Linear Transformation
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2.1: Matrix Operations
Math 220: Linear Algebra

If Ais an mXn matrix with m rows and n columns, then the entry in the ith row and
jth column is denoted by and is called the

Column
= Z"_ -
a’l [ J alj e aln
_.aml L 2 2 :I amj L N aan
T 1 1
4 aj By
The entries are Q18,5 ,053,... and they-form the
A matrix is a square matrix (#X7 ) whose non-diagonal
entries are all . The matrix [, is a

diagonal matrix with down the diagonal.

The matrix has all zeros in all of its entries and is written just as 0.

Two matrices are if they are the same and the

corresponding are
The _ of two matrices is the of their
corresponding . Thus, two matrices can only be - if their

( ) is the same. Otherwise, the sum is not defined.

. 12 -1 0 |12 3 ~_ |4 3
Ex 1: Given A_[—3 3 _2},B—!j4 s 6J and C—[z J.

Find the following, if defined.
a) A+B b) B+C
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2.1: Matrix Operations

The is the matrix
whose entries are _ times each entry of A.
The matrix represents and is the same as ;

Ex 2: Given A= 2 10 and B=1 23 . Find
4 5 6

-3 3 =2
a) 2A b) B-2A
Theorem 1
tet A B, and C be matrices of the same size, and let r and s be scalars.
aA+B=B+4 | dr(A+B)=rA+rB
b.(A4+B)+C=A+(B+C)

e(r+8)A=rA{sA
cA+0=4 fr{sd)=(rs)A
‘Matrix Multiplication

Definition.

lfAis an m X n matix, and if Bis an i X p matrix with columﬂs bi,...,byp, thenthe
product AB is the m x p matrix whose columns are Aby,...,Aby. Thatis,

AB=Alby by --- by, ] = [Ay Aby --- Ab,]

. 12 -1 0 14 3]
Ex 3: Given A—[_S 3 _2} and C—L 1}compute CA.

Cal = C'a‘2 = Ca3 =
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2.1: Matrix Operations

Ex 4: Given 14:[__23 ;1 —OZJ and C=B ﬂ, is the matrix AC defined?

Row-Column Rule for Computing AB
it the product AB is defined, then the entry in row i and column j of AB is the sum of the
produicts of corresponding entries from row 7 of A and column jof B If (AE)ij denotes

the (4, 7) -entry in AB, and if A is an m X - mafrix, then

Ex 5: Find the entries of the 3" row of AB, where 2 5 0
' 4 —6
-1 3 —4
A = ¥ B = : |
6 -8 —7 T
-3 0 9 ‘

We could have just ignored the rest of A and computed
4 -6

row; (AB) = row; (4) - B [6 -8 -7]|7 1
3 2

Theorem 2 _ i
Let Abe anmn X n matrix, and let B and C have sizes for which the indicated sums and
products are defined. ' '

a. A(BC)=(AB)C (associative law of multiplication)

b. A(B+C)= AB+ AC (left distributive law)

c.(B+CYA=BA+CA  (right distributive law)

5 r(AB) = (rA)B= A(rB)

" for any scalar r
. In,A=A= Al (ideniity for matrix multiplication)

Tl UBR W VW



2.1: Matrix Operations
While the following properties are all true, be careful, the

property is not true, that is, AB _ BA.

_13J and B= :1),

commute. That is, verify that AB# BA.

Ex6: Let A= {_2
4

_521. Show that these two matrices do not

Warnings:
1. In general, AB # BA.

2. The canceliation laws do nof hold for matrix m-ultiplicatioh. That is, if
AB = AC, thenitis nottrue in general that B = C. (See Exercise 10.)

3. If a product AB is the zero matrix, you cannof conclude in general that
either A = 0 or B = 0. (See Exercise 12.)

| -2 -3} [8 4 5 =27
10. Let_A._{_‘i 6]’Bf[5~ _5], aamdc'_,[3 1].

Verify that AB = AC andvet B # C.
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2.1: Matrix Operations
12. let A = { f _s} Construct 2 2 x 2 matrix B such that AB is the zeré matrix.

Use two d:iﬁe;-rént nonzera columns for 8.

If Ais an nXn matrix and if k is a positive integer, then AF =

Given an mXn matrix A, then the of A is the nXm
matrix, denoted by whose _ are formed by the
corresponding of A.

- -

1 3
. |1 2 157 12 1 0
Ex 7: Let A—';?’ J,B-— 5 4 , and C—[_3 4 _SJ. Find
L6 8J
AT = BT = CT =

Let A and B denoie matrices whose sizes are appropriate for the following sums and products.
ey o
a (ATy =A c. For any scalar r, (r4)" = rA”T
b.(A+B)" = AT+ B” d. (AB)T = BTAT
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2.1: Matrix Operations

Practice Problems |
1. Since veclors in R® may be regarded as = X 1 matrices, the properties of
fransposes in Theorem 3 apply io vectors, foo. Let

S N

compute (Ax)T,xTAT xxT ,and xTx. 1s ATxT defined?

2. Let Abe a4 x 4 mafrix and let x be a vector in R*. What is the fastest way to
compute A%x? Count the multiplications.

3. Suppose A is an m X n mairix, all of whose rows are identical. Suppose B is an
n X p matrix, all of whose columns are identical. What can be said about the entries

in AB?
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2.2: The Inverse of a Matrix
‘Math 220: Linear Algebra

Remember that the

or

of a number, say 7 is or

. The actual

definition of this is that

7= 7.

An (nXn ) matrix A is called

CA=1] and AC=1I
(I =1, is the nxn identity matrix.)

Here, C is called the of A. Is C unique?

Yes, so denote the inverse with _A‘1 and

A7'A=1T and A471=7]

A matrix that is NOT invertible is called a
matrix that IS invertible is called a

3 5 3

Ex1: If A#[_Z _3] andC={_5 ;3J verify that C= 41

Page 1 of 5
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2.2: The Inverse of a Matrix

Theorem 4 7
. a b
letA= [ d] . fad — be # 0, then A is invertible and
c -

PR [ d —b]
If ad — be = 0, then A is not invertible.

This value ad —bc is called the and we write
det A =ad—be
So theorem 4 states that iff

Ex 2: Find the inverse of A=

If A is an invertible n X . matrix, then for each b in R"™, the equation Ax = b has

the unique solution x = A lp,

Proof:
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2.2: The Inverse of a Matrix

Ex 3: Use the inverse of the matrix A= —2 3 fromEx1| A 1= =5 -3
3 5 3 2

—2x1 —3x2 =5
to solve the system _
3xl + Sx2 =7
Theorem 6 .
a. If A is an invertible matrix, then A1 is invertible and
| 'y —1
(A =4

b. If Aand Bare n X n invertible matrices, then so is AB, and the inverse of
AB is the product of the inverses of A and B in the reverse order. That Is,

(ABy ' =B141

c. If A is an invertible matrix, then so is AT, and the inverse of AT is the
transpose of A—1. That s,

(47) " = (a7’

Proofs:
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2.2: The Inverse of a Matrix

From Theorem 6b, we can extrapolate to the following.

The product of n x n invertible matrices is invertible, and the inverse is the
product of their inverses in the reverse order.

(Read pages 108-109 on Elementary Matrices)

We are going to look at finding the inverse of a matrix with a slightly different
approach than this text.

ifan nXn métrixA has an inverse, let’s call that matrix B. Then
AB=1

This can be written as:

We can think of this as many systems, whére each solution forms the columns
vectors of our matrix B.

We could solve each one of these individually, or stack them all together.

1 2 3
Ex4: Findtheinverseof A=|2 5 4
1 -1 10
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2.2: The Inverse of a Matrix

Theorem 7 ,

Ann X n matrix A is invertible if and only if A is row equivalent to 1,, andin
this case, any sequence of elementary row operations that reduces 4 fo I,
also transforms I, info A—1.

Algorithm for Finding A~1 B |
Row reduce the augmented mafrix [A I]. If Ais row equivalent {o / then [A ITis
row equivalentto [I A~!]. Otherwise, A does not have an inverse.

1 -2 -1
Ex5: Findtheinverseofthematix A= | -1 &5 6|, ifitexists.
5 —4 5

(Do this by hand — more practice.)

Page 5 of 5






2.3: Characteristics of Invertible Matrices
Math 220: Linear Algebra

Theorem 8 The Invertible Matrix Theorem
Let A be a square = X n  matrix. Then the following statements are
equivalent. That is, for a given A, the statements are either all frue or all false.

a. A is an invertible matrix.

b. A is row equivalent to the 2 X n identity matrix.

€. A has n pivot positions.

d. The equation Ax = 0 has only the trivial solution.

e. The columns of A form a linearly independent set.

f. The linear transformation x +— Ax is one-to-one.

g The equation Ax = b has at least one solution for each b in Re.

h. The columns of A span R".

. The linear transformation x — Ax maps R® onto R™.

j- Thereis an i X . matrix C such that CA = I.

k. There is an n X i matrix D such that AD = 1.

. AT is an invertible matrix.

Theorem 5 from 2.2 could also make g. state solution.

If A and B are square matrices, and AB =1, then by j. and k. both A and B are
invertible with B=A4"! and A=B"1. '
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2.3: Characteristics of Invertible Matrices
The Invertible Matrix Theorem essentially divides the set of all 7#Xn matrices into

two disjoint classes:

Invertible . _ Not Invertible

Ex 1: Use the Invertible Matrix Theorem to determine if the following are invertible.

Be careful, the Invertible Matrix Theorem only applies to matrices.

Page 2 of 4



2.3: Characteristics of Invertible Matrices
_ in light of linear

If A is invertible, we can also think about
transformations.

Multiplication
'b:y{ﬁ A

~9Ax

Multiplication :
by A”!

In general, a'Linear Transformation 7:RY — R¥ js
there exists a function S:RY — R¥ such that

S(T(x)) =x forall xe RV
T.(S(x)) =x forall xe RV

of T and write it as

We call § the

Theorem 9 |
Let T :R™ — R™ be a linear transformation and let A be the standard matrix
for 7. Then T is invertible if and only if A is an invertible matrix. In that case,
the linear transformation S given by §(x) = A~!x is the untque function

satisfying equations (1) and (2).

Ex 2: What can be said about a one-to-one linear transformation 7: R¥ —R¥?
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2.3: Characteristics of Invertible Matrices
Practice Problems

2. Suppose that for a certain 1 X nn matrix A, statement (g) of the Invertible
Matrix Theorem is not true. What can you say about equations of the form

Ax =b?

3. Suppose that A and B are n X n matrices and the equation ABx=0
has a nontrivial solution. What can you say about the matrix AB?
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3.1 & 3.2: Determinants
Math 220: Linear Algebra

Although out of fashion, determinants played a large role in the early development of
linear algebra. Four uses of determinants include the following: Determinants help us

“determine” if a system of linear equations has a unique solution. They are a
mechanism to “determine” whether the inverse of a matrix exists (this would have
come later). They may be geometrically interpreted as the scaling factor of a linear
transformation. And the determinant is also a calculating mechanism used elsewhere
in-math to find things such as the cross-product (Calculus Ill), Jacobian (Calculus IV),

and the Wronskian (Differential Equations).

As to why they have fallen out of favor? Well they are computationally expensive
even with modern technology. So we have adopted other ways to accomplish their

original purpose.

Their primary reason for being in this course is that they are needed for our
development of the eigenvalue and eigenvector in a subsequent chapter.

0 4 1 0 4 1
Ex1: If 4=|5 -3 0] find det 4 which is also notated |5 -3 ¢
2 3 1 2 3 1
01 4
Ex 2: Calculate [5 0 -3[ by expanding across the second column.
21 3
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3.1 & 3.2: Determinants

1 0 0 O
. 7 -2 0 0
Ex 3: Compute the determinant:
‘ 2 6 3 0
3 8 4 4

Theorem 2 :
. If Aiis a triangufar matrix, then det A is the product of the entries on the main diagonal of A.

5 -7 2 2
, . 3 0 4
Ex 4: Compute the determinant:
-5 -8 0 3
0 5 0 -6

Theorem 3: Row Operations
Let A be a square matrix

a. If a multiple of one row of A (old) is added to another row to produce a matrix
B (new), then det4=detB.
b. If two rows of A (old) are interchanged to produce B (new), then det A=-detB.
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3.1 & 3.2: Determinants
c. If one row of A-(old) is multiplied by k to produce B (new), then' det 4 =-]1;detB

Ex 5: Find the determinant by first row-reducing to echelon form.

3 3 -3
2 -3 -5
3 4 -4

Ex 6: Find the determinant by first row-reducing to echelon form.

1 30 2
2 57 4
3 52 1
1 -1 2 -3
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3.1 & 3.2: Determinants

/

Let’s consider two different triangular matrices and their invertibility. The focus on
triangular matrices is reasonable as we learned in a previous section that row
operations do not impact the invertibility of matrices.

—_ ba = be

" % % % E % & %
|0 = = =i |0 = & x
U= g 0 = = U= 0 0 -
Rl 0 0 " 0 0 0 0
dat /2 0 det =0
Theorem 4

A square matrix A is invertible if and only if det A # 0.

Ex 7: Revisiting (Ex 6: ), at what point could we have stopped?

1
-2
3
1

30
57
5 2
1 2

|
4
|
-3|
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3.1 & 3.2: Determinants

Theorem 5
IfAis an 7z X n matrix, then det AT = det A.

Theorem 6 Multiplicative Property
IfAand Bare rn X n matrices, then det AB = (det A) (det B) )

Ex8: VerifyThm6for A = 3 6 ,B= 4 3
-1 -2 -1 -3
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3.1 & 3.2: Determinants

Practice Problems

1 -3 1 -2
2 -6 -1 2| _
1. Compute in as few steps as possible.
0 4 b 1
-3 10 -6 8

2. Use a determinant fo decide if vi,ve,and v are linearly independent, when

5 -3 2
vi=|-7|, V2= 3|, va=|-T7
9 -5 5

3. Let A be an n % i matlrix such that A2 = 1. Showthatdet A =41.
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4.1: Vector Spaces and Subspaces

Math 220: Linear Algebra
Definition
A vector space is a nonempty set V/ of objects, called vecfors, on which are
defined twn operations, called addition and multipiication by scalars (real

numbers), subject to the ten axioms (or rules) listed below. The axioms must
hold for all vectors u, v, and w in V and for all scalars c and d. ,

1. The sum of u and v, denoted byu+v, isin V.
Zutv=v+u
3 (u+v)+w=u+(v+w).
4. There is a zero vector 0 in Vsuch thatu + 0 = u.
5. Foreach u in V, there is a vector —u in V such that u (—u) = 1.
6. The scalar multiple of u by c, denoted bycu,isin V.
7.c(u+v) =cu+ecv.
8. (c+d)u=cu+du.
9. ¢(du) = (cd)u.

10. lu = u.

It also follows that

Ou=0 (1)
c0=0 (2)
—u= {—1)u (3)

for n2>1 are the best examples of vector spaces. We

The spaces
for much of our discussion of vector spaces.

will picture
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4.1: Vector Spaces and Subspaces

Ex 1:
Let V be the set of all arrows (directed line segments) in three-dimensional
space, with two arrows regarded as equal if they have the same length and
point in the same direction. Define addition by the parafielogram rule (from
Section 1.3), and for each v in V, define ¢ v to be the arrow whose length is |c]
times the length of v, pointing in the same direction as v ifc > 0 and
otherwise pointing in the opposite direction. (See Figure 1.) Show that Vis a
vector space. This space is a common model in physical problems for various
forces.

Read Example 3 on page 193

Ex 2: Discuss whether the set P, of polynomials of degree at most n is a vector

space.

Page 2 of 6



4.1: Vector Spaces and Subspaces

Read Example 5 on page 194

Definition

A subspace of a vector space Vs a subset H of V that has three properties:
a. The zero vector of Visin H.
b. His closed under vector addition. That Is, for each u and v in H, the sum
u-+v isinH
¢. His closed under multiplication by scalars. That is, for each u in H and
each scalar ¢, the vector cuis in H.

Note: Every subspace s itself a Vector space.

vector in a vector space Vis a subspace of V called the

The set of just the
' and written

Ex 3: Discuss that P, set of all polynomials and a subspace of the set of all real-
valued functions, and £, is a subspace of P.
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4.1: Vector Spaces and Subspaces

What about a plane not through the origin? Or a line in R?2 not through the
origin? Are they Subspaces? (of R3 and R? respectively).

Ex 4: The vector space R2 is NOT a subspace of R3, but His. Discuss.

8
H=1{1|t| :sandtarereal
0

Ex5: Given vy and o in a vector space V, let H = Span {v;,vs}.
Show that H is a subspace of V.
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4.1: Vector Spaces and Subspaces

Theorem 1 | .
fwi,...,vp areinavector space V, then Span {vi,..., Vp} isa

subspace of V.

-« We call this subspace the by {Vl’""’é}

And for any subspace H, we call the set {vl,...vp} such that H = Span{vl,...vp} ,

the
Ex6: Let H be the set of all vectors of the form a where a and b are arbitrary
scalars. Show that H is a subspace of R* 3a;b

a—2b

We can think of the vectors in a spanning set as the “handles” that define a subspace H,

and allow us to hold it and work with it.

Ex 7: For what value(s) of i will y be in the subspace of R3 spanned by vi,va,v3 if

5 -37 —4
V] = . Vg = —4 s V3 — 1 A and y P— 3
o~ 0 h

(This is the same example in the text from 1.3 — now with the context of subspaces.)
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4.1: Vector Spaces and Subspaces

Practice Problems :
1. Show that the set H of all points in B2 of the form (3,2 + 5s) is not a vector
space, by showing that it is not closed under scalar multiplication. {Find a specific
vector u in H and a scalar ¢ such that ¢ uis notin H.)

3. An nn X n matrix A is said to be symmetric if AT = A. letSbethesetofall 3 x 3
symmefric mafrices. Show that S is a subspace of M3x3, the vector space of 3 x 3
matrices.
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4.2: Null & Col Spaces and Linear Transformations
Math 220: Linear Algebra

Remember that a homogeneous system of equations

5x,+21x,+19x,=0
13x,+23x,+ 2x,=0
8x; +14x,+ x,=0

can be written in matrix form as AX=0 where

| The solution set is all the vectors X that satisfy
A= the matrix equation. We are going'to name this
set of solutions the

Definition _
The null space of an m X n matrix A, written as Nul A, is the set of all
solutions of the homogeneous equation Ax = 0. In set notation,

Nul A = {x : x is in R” and Ax = 0}

5
Ex 1: Let A be the matrix defined above. Determine whether the vector u=|-3
belorigs to the null space of A. 2
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4.2: Null & Col Spaces and Linear Transformations

Theorem 2

The nul space ofanm X nn matrixAisa subspace of R®. Equivalently, the
set of all solutions to a system Ax = 0 of m homogeneous linear equations
in n unknowns is a subspace of R™.

Proof:

Ex 2: Let H be the set of vectors in IR3 whose coordinates a, b, and c satisfy the

equations and

Show that H is a subspace of R3. (Hint: Create two dependence relations.)

Ex 3: Find a spanning set for thé null space of the matrix A =Ll)
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4.2: Null & Col Spaces and Linear Transformations

Two properties of null spaces that contain nonzero vectors that we see from the

last example.

1. The spanning set generated using the previous method is automatically

2. The number linearly independent vectors in the spanning set of Nul A equals
the number of in the equation Ax=0).

Definition
The column space of an m X 1 matrix A, written as Col A, is the set of all

linear combinations of the columns of AfA= [aI "o a,,_], then

Col A =Span{ay,...,a,}

Thenfem 3
The column space of an m X n matrix A is a subspace of [R™,

Col A = {b : b = Ax for some x in R"}

Ex 4: Find a matrix A such that W =Col 4.

- 3

([ b—¢
2b+c+d ‘i
W= . 10,0, ¢
\J. e — 4d b,c,dreal }
\ L d . | J

The column space of an m X 1 matrix Ais all of R™ if and only if the
equation Ax — b has a solution for each b in R™,

Page 30of6



4.2: Null & Col Spaces and Linear Transformations

1
4 |, answer the following. -

-1

DN =t e
B W

1

Ex 5: Given the matrix A=|2
1

a) Find R¥ such that Nul A is a subspace of RF

b) Find R¥ such that Col A is a subspace of R

c¢) Find an example of a nonzero vector in Nul A as well as Nul A.

d) Find a nonzero vector in Col A.

e) Is 42 inthe Nul A? Is in the Nul A?

1

1
f) Is|-1|in Col A?
4
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4.2: Null & Col Spaces and Linear Transformations

Contrast Between Nul A and Col Aforan m X nn  Matrix A
[ Nul A I ColA ]
1. Nul A is a subspace of B™. 1. Col Ais a subspace of ™.

o v plicill dafined, hat is.YoU || 2. ol Ais explicitly defined: inat is, you
are given only a condition (Ax = @) that are told how 1o build vectors in Col 4
vectors in Nul A must satisfy. e utaks i

3. It takes time o find vectors in Nul A. f&:ﬁ:ﬁﬁ?ﬁﬁoamgﬁgﬁ if"éﬁ]‘g r‘: The
: A e | fAa layed; others are
Row operations on | A ﬂ] arg required. formed from them.

4. There is an obvious relafion belween 1

4. There is no obvious relation befween o i
e il Col A and the entries in A, since each
Wit Sand io-antiias i 4: columnofAisin Col A.
e — e 5. A typical vector v in Col A has the
5. A typical vector v in Nul A has the " . L=
S _ property that the equation Ax = v is
property Av = 0. consistent.

6 '(:‘_«ivgn a specific vector v, it'is easy fo tell talmgl;??ez lsf;;e::slﬁlg \é%r;tgr E O_i;may take
if v is in Nul A. Just compute A v. operations on [ A v] are required.

m - -
7.Nul A = {0} ifand only ifthe equation| 7-Col A =R™ ifand only ifthe
- P equation AX =b has a solution for
Ax = 0 has only the trivial solution. | everyb in R™. .

8.Nul A = {0} ifand only ifthe linear | 8-C0ol A =R™ ifand only if the linear
transformation x —+ Ax is one-to-one. ]tlfl?ﬁ':_sfq"“at'o“ x — Ax maps R® onfo

Definition
A linear transformation T from a vector space V into a vector space Wis a rule that
assigns to each vector x in V a unique vector 7(x}in W, such that
_ o i _' £ = T
) T(u+v)=T(u)+T(v) forallu, vin V, and e
(i) T{cu) = cT'(u) for alluin VVand all scalers c. il
i~ Remelisa Rangeisa .

subspace of ¥ subspace of W
and is the set if all

The null space of a linear transformation is called the

vectors ue ¥ such that T (u)=0.

The _of Tis the set of all vectors in W of the form AT(X) for some xe V.
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4.2: Null & Col Spaces and Linear Transformations

Ex 6:

(Calculus required) Let V be the vector space of ail real-vaiued functions f defined on an interval
[a,8] wiih the property that they are differentiable and their derivatives are continuous functions on
[2,]. Letwbe the vecior space C'a,b] of ali continucus functions on la,b], andiet

D:V — W be ihe fransformation that changes fin V into fis derivative f*. In caiculus, two
simple differentiation rules are

D(f+9)=D(f)+D(g) and D(cf) =eD(f)

That is, D is a linear iransformation. It can be shown ihat the kernel of D is the set of consiant
functions on [a,b] and the range of D is the set W of all continuous functions on [a,b].

Practice Problems
a
1.1etW=1{|p| :a—3b—ec=0 ). Showintwo different ways that Wis a
c

subspace of R2. (Use two theorems.)

7 -3 b 2 7
2letd=|-4 1 -5|,v=| 1|,andw=] 6|. Supposeyou
-5 2 —4 -1 —3

know that the equations Ax = v and Ax = w are both consistent. What can you
say about the equation Ax = v+ w7
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4.3: Linearly Independent Sets; Bases
Math 220: Linear Algebra
Recall the previous definitions of Linearly Independent and Linearly Dependent. We

are now going to think in terms of a Vector Space V, rather than just R”.

Definition - = vy
An indexed set of vectors {vl, EG -y vp} in M is said fo be linearly

independent if the vector equation
V1 +TavVe -+ 2V =0

has only the trivial solution. The set {vy,...,v,} is said to be linearly
dependent if there exist weights ¢, . ..,c,, not all zero, such that

avit+ovet--+gvy =0

And recall that

Theorem 4 '
An indexed set {v1,...,v,} of two or more vectors, with vy # 0, is |
linearly dependent if and only if some v; (with § > 1) is a linear combination

of the preceding vectors, vy,...,v;_;.

If a vector space is not R” described with the easily solved matrix equation 4x=0,
then we need Theorem 4 to show a linear dependence relation to prove linear
dependence.

Ex 1: Discuss the linear dependence or independence of the following sets on C [O,l],

the space of all continuous functions on 0<¢<1.

{Sint,cos t} {sintCOst,sin Zt}
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4.3: Linearly Independent Sets; Bases

Definition |
Let H be a subspace of a vector space V. An indexed set of vectors B = {by, ..., by}
in Vis a basis for Hif
- {i) Bis a linearly independent set, and
(i) the subspace spanned by B coincides with H; that is,

H = Span{bs,...,bp}

Ex2: What can we say about an invertible n x n matrix A?

The columns of the identity matrix, €;,€,,...€; is called the

*3
for R”. ’ m—— Xy

Ex 3: Determine whether {VI’VZ’V3} forms a basis for R3.

2 1 3
V1=. 4 ’V2= —1 ,V3: O
4 ) R )

Do {vaz} form a basis for R2?
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4.3: Linearly Independent Sets; Bases

Ex4: LetS= {1,t,2,.. ;-,t"} . Verify that S is a basis for IP,,. This basis is called the
standard basis for Py,.

A basis is an “efficient” spanning set because it contains no unnecessary vectors.

Ex5: Let H=Span{v1,vz,v3} as in Ex 3. Show that Span{vl,vz,v3} =Span{vl,v2}

2 1 3
v, = 4 ,V2= -1 ,Vy = 0
4

-2 -2

Theorem 5 The Spanning Set Theorem _ _
tetS = {v1,...,vp} beasetinV,andlet H =Span {v1,...,v,}.

a. If one of the vectors in S—say, vx —is a linear combination of the remaining vectors
in S, then the set formed from S by removing v still spans H. '

b. if H # {0}, some subsetof Sis a basis for H.

Proof:
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4.3: Linearly Independent Sets; Bases

We already know how to find a basis for the Nul A, as we saw that the row reduced
system that describes the solutions of Nul A, is already linearly independent.

However, finding a basis for Col A that doesn’t have unneeded vectors is our next step.

Ex 6: Find a Basis for Col B where .

-3
4
0
0

B=[b, b, b, b, b=

O = OO

0 4
1 -5
0 -2
0 0

SO OoO -

Ex 7: Find a Basis for Col A where, A reduces to the matrix B in the previous example.

1 0 31 2
0O 1 431
3 2 1 -8 -6
2 36 7 9

Since Ax =0 and the reduced echelon form Bx =0 have the exact same solution sets,
then their columns have the exact same dependence relationships. Let’s check.
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4.3: Linearly Independent Sets; Bases
WARNING: You must use the original pivot columns of A.

Question: Why doesn’t Col 4= Span{bl,bz,b4} ?

Theorem 6
The pivot columns of a matrix A form a basis for Col A.

A basis is basically the smallest spanning set possible. Remove any vectors from it, and
the set is no longer spanned, add any vectors to it, and it becomes linearly dependent.

1 2 1 2]
0,3 0),(3],
o] lo o] |o
Linearly independent A basis
but does not span R3 for B3 linearly dependent
Practice Problems
1 _ -2
1.letvi= | -2| andve=| 7|. Determineif {v1,v2} is abasis for R3.
3 -9

- Is {w1,v2} a basis for R2?
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4.3: Linearly Independent Sets; Bases

1 6 2 4]
2.letvi=|-3|,vo=| 2|,va=|-2]|,andvg=|-8|. Finda
4 -1 3 9

basis for the subspace W spanned by {jv1,vz,1f,s,v4}

1 0 8
dletvi= |0 | ,va= |1|,and H = gl :sinR . Thenevery vector
0 0 0
in H is a lingar combination of v; and vy because
8 1 |0
g|=38|0| +s8]|1
0 0 0

is {v1,va} abasisfor H?
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4.4: Coordinate Systems
Math 220: Linear Algebra

Theorem 7 The Unique Representation Theorem :
Let B = {bl, ceny b“} be a basis for a vector space V. Then foreach x in V.,

there exists a unique set of scalars ¢;,...,¢, such that

X=0¢bj+:--+eby

Proof:

Definition . :
Suppose B = {by,..., b, } is a basis for Vand x is in V. The coordinates

of x relative to the basis B (or the B-coordinates of x) are the weights
C1y...,Cn Suchthat x = c;by + - -+ ¢, by.

We call this vector the
( ) [x]p = |

or the _ Cn
(determined by B)

x — [x|p isthe.
- 1] |
Ex1: Consider a basis B = {by,bs} for Rz, where by = [u] and bz = E] '

_ - -2
Suppose an x in R? has the coordinate vector [x] 5 = - Findx.
B™1 3
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4.4: Coordinate Systems
17 _ .
Ex 2: The entries in the veclor x = [ﬁ] are the coordinates of X relative to the standard
basis £ = {e1,ea}, since
r1 -
6]

ife = {e1,ea}, then [x], =x.

- /
iy
Lz, ,z
:' i 2/
FIGURE 1 Standard graph paper. FIGURE 2 B-graph paper.

See Example 3 on page 219.
- 2 —1 4
Ex3: Letbhy = [3] bz = [ i] X = [5} , and B = {b;,by}. Findthe

coordinate vector [x] 5 of x relative to B.
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4.4: Coordinate Systems

The matrix Pg changes the B-coordinates of a vector X into the standard
coordinates for x. An analogous change of coordinates can be caried out in B®

fora basis B = {by,...,b,}. Let
Pg=[by bs --- b,]

Then the vector equation
x=cib; + b2+ +¢zby

is equivalent to

x = Pplx] @

We call Pp the change-of-coordinates matrix from B to the standard basis i in
R". Left-multipiication by P transforms the coordinate vector [x]; into x.

Since the columns of PB form a basis, they are linearly independent, and have an

inverse, which leads to

The Coordinate Mapping
Choosing a basis B = {b,...,b,} for a vector space V introduces a
coordinate system in V. The coordinate mapping x > [X]; connects the
possibly unfamiliar space V to the familiar space R™. See Figure 5. Points in v

can.now be identified by their new “names.”

FIGURE 5 The coordinate mapping from V onto R™ :
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4.4: Coordinate Systems

Theorem 8 ‘ ‘
Let B = {by,...,b,} be a basis for a vector space V. Then the coordinate
mapping x ++ [x] is a one-to-one linear transformation from V onto R™.

/

A one-to-one linear transformation from a vector space V onto a vector space W is
called an from V onto W.

Essentially, these two vector spaces are indistinguishable.

Ex4: Let B be the standard basis of the space IP; of polynomials; that is, let
B = {1,,£*,£*}. Atypical element p of Ps has the form

p(t)= ao |
o a3
Since p is a linear combination of the standard basis vectors, then [p]B =
. as
Las_

So pw+ [p]B is an isomorphism

from P5 onto R4.

Ex 5: Use coordinate vectors to test the linear independence of the sets of polynomials.

a) 142882 +¢—32,—t+28 -8
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4.4:-Coordinate Systems

b) Isthisabasis Ps? (1—#%¢t—222 43,1 —1)°

3 —1 : 3
Ex6: Let vi=|6|, va=| 0|, x=1[12],
2 1 7

and B = {v1,va}. Then Bis abasis for H = Span {v1,vz}. Determine ifx is in
H, and if it is, find the coordinate vector of x relative to 8. .
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4.4: Coordinate Systems

Practice Problems
17 -3 3 -8
1.Leth; = |0} ,b2 = 4| ,bs=| 6| ,andx= 2
0l 0 3 3

a. Show that the set B = {by,by;bs} is abasis of R®.
b. Find the change-of-coordinates matrix from B to the standard basis.
¢. Write the equation that relates x in R? to [x] B

d. Find [x] 5, for the x given above.

2.Theset B={1+¢,1+1%,¢ +¢2} is abasis for P;. Find the
coordinate vector of p (t) = 6 + 3t — ¢ relative to B.
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4.5: The Dimension of a Vector Space, Rank
Math 220: Linear Algebra

Intro: These sections focus on a number of characteristics of common subspaces:

dimension, rank, nullity, and the row space.

Theorem 9 |
if a vector space V has a basis B = {‘bl, 2um ,bn}, then any setin V
containing more than n vectors must be linearly dependent.

Theorem 10
If a vector space V has a basis of n vectors, then every basis of V must consist

of exactly n vectors.

Definition _
If Vis spanned by a finite set, then V is said to be finite-dimensional, and the

dimension of V, written as dim V, is the number of vectors in a basis for V.
The dimension of the zero vector space {0} is defined to be zero. If V is not
spanned by a finite set, then Vis said o be infinite-dimensional.

| Ex 1: Find the following

a) dimR" =

b) dimP, = (recallP_,, :_Span{l,t,tz,ﬁ}J

c) dimP,=

d) dimP (recall P = all polynomials)
1

e) Given  =span , we can seedim H =

f) Given G=span: we can seedimG =
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4.5: The Dimension of a Vector Space, Rank

Ex 2: Find the dimension of the subspace

([ a—4b—2¢
2a + 5b — 4dc )
T :a,bein R
—a+ 2¢
L _30' + Tb + 6(:5_
The subspaces of R3 can be classified by dimension now.
.T_:' Xy .1‘3‘
[ Bdimo
1-din 2-dime 2-dim
J_ 7/ p — 4

: /’//v:idim- P - ’é/ m‘/x;-\ f{;———t__"/:'“
,// : Xy / .13 / Ly

X X
Thecrem 11

Let H be a subspace of a finite-dimensional vector space V. Any linearly
independent set in H can be expanded, if necessary, to a basis for H. Also, H
is finite-dimensional and

dimH < dimV

Proof:
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4.5: The Dimension of a -’Vectof Space, Rank

Theorem 12 The Basis Theorem

Let V be a p-dimensional vector space, p > 1. Any linearly independent set
of exactly p elements in V is automatically a basis for V. Any set of exactly p
elements that spans V is automatically a basis for V.

Proof:

What can we say about the dimension of Col A and Nul A?

The dimension of the null space of A is

The dimension of the column space of A is:

Ex 3: Determine the dimensions of the nuil space and the column space of A.

[1 0 -3 1 2 10-30 4
4|01 4 3 1| |01 40 -5
32 1 -8 -6 00 0 1 -2
2 36 7 9/ (00000

Page 3 of 6



4.5: The Dimension of a Vector Space, Rank

Row Space

The set of all the linear combinations of the row vectors of an mX#n matrix A is called
the of A, and is denoted by . Since there

are n entries in each row, Row A is a subspace of R”. Also, Row A =

Ex 4: Find a spanning set for Row A.

1 0 31 2|
101 4 31
A‘—3 2 1 -8 =6

2 36 7 9
Theorem 13

if two matrices A and B are row equivalent, then their row spaces are the
same. if B is in echelon form, the nonzero rows of B form a basis for the row
space of A as well as for that of B.

Ex 5: Find bases for the row space, column space, and null space of A.

1 0 =31 2 10 30 4]
101 4 31 01 40 -5
=153 5 1 8 6™00 0 1 2
2 36 7 9/ (0000 O]
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4.5: The Dimension of a Vector Space, Rank

The of A is the dimension of the column space of A.

The of is the dimension of the row space of A.

The of A is the dimension of the null space of A (though this text just
uses .)

Theorem 14 The Rank Theorem '
The dimensions of the column space and the row space of an m X n matrix

A are equal. This common dimension, the rank of A, also equals the number of
pivot positions in A and satisfies the equation

rank A+ dimNulA=n

(See proof on page 235.)

Ex6: a)lfAisan X matrix with three-dimensional null space, what is the
rank of A?

b) Could a 3x5 matrix have a one-dimensional null space?

In chapter 6 we will learn that Row A and Nul A have only the
in common, and they are actually to

each other. Take a look at example 4 on page 236.

Ex7: A scientist has found two solutions to a homogeneous system of 40 equations in 42
variables. The two solutions are not multiples, and all other solutions can be constructed
by adding together appropriate multiples of these two solutions. Can the scientist be
certain that an associated nonhomogeneous system (with the same coefficients) has a

solution?
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4.5: The Dimension of a Vector Space, Rank

Theorem The Invertible Matrix Theorem (continued)
Let A be an i x . matrix. Then the following statements are each equivalent o the
statement that A is an invertible matrix.

m. The columns of A form a basis of R"™.

n.ColA=R"

0.dimColA=n

prank A=n

q. Nul A = {0}

r.dim Nul A =0

Practice Problems
The matrices below are row equivalent.

2 -1 1 —6 8 1 -2 4 3 -2

-2 _4 ] — - ‘
a1 3»29 p_|0 3 9 -12 12
7 8 10 3 -10 0 0 0 0 O
4 -5 -7 0 4] 0 0 0 0 Ol

1. Find rank A and dim Nul A.
2. Find bases for Col A and Row A.
3. What is the next step to perform to find a basis for Nul A?

4. How many pivot columns are in a row echelon form of AT?
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4.6: Change of Basis
Math 220: Linear Algebra

We are now going to look at converting a vector x in one coordinate system into
another coordinate system — same vector, different coordinate representation.

Consider the following vector spaces spanned by {bl,bz‘} and'{cl,éz} respectively.

\ > ..‘.- \‘\ ”\ ~.\ i

. RN
b \ "-. - \ 5 |
N \ LN\

()

e

By observation, find  [X|g = and [x]; =

Ex 1: Consider two bases B = {bj,b2} and C = {c1,c2} for a vector space V such that

b;i =4¢; + ¢ and be = —6c; +Ca

. 3
Suppose x = 3by + bg (thatis, [X|p = [l] ), find [x]o
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4.6: Change of Basis

Theorem 16
Let B={by,...,b,} and C = {e1,...,6n} be bases of a vector space V. Then

there is a unique n X n matrix P such that

C—B
xl~= P [x] 4)
[Xlc = P [xlp (4)
The columns of CPB are the C-coordinate vectors of the vectors in the basis B. That is,
{_
P = [bilg [zl ... [ba]e] (5)
CeB
P isthe
C—B
V
X
I e N Y
| rultiplication
Ix], A by M ¥l
¢ R
E‘E-:ﬂ ﬁ«'i
. P . . )
Why are the columns of CoB linearly independent?
So P is
CB

So equation (4) above can be re-written as Xlc =[xz

Since &{’B is the matrix that converts B-coordinates to C-coordinates, what shouid

(7] do?

C«B
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4.6: Change of Basis

-1 _ P
(G‘fﬂ) BFG

Change of Basis in R"
if B={by,...,b,} and e isthe standard basis {ey,...,e,} inR*, then

[bi], = b1, and likewise for the other vectors in B. In this case, PB is the
E4—.

same as the change-of-coordinates matrix PB introduced in Section 4.4,
namely,

Pg=[b, by - by

However, to change coordinates between two non-standard bases in R”, we will
need to use Theorem 15, and find coordinate vectors of the

relative to the

Ex 2:

| —6 T2 2 6
Let b1 = 4 ,ba = 0 €= 1 , €2 = 9 . and consider

the bases for RZ givenby B = {b1,b2} and C = {¢,, cz }. Find the
change-of-coordinates matrix from B to C.
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4.6: Change of Basis

[er €2 by by ]~ Fcfs]

7 -3 1 =2
X a Oy [5] ’ [_1] yC1 [_5] yC2 l 2] and consider

the bases for R? givenby B = {by,bs} and C = {c1,ca }.
a. Find the change-of-coordinates matrix from Cto B.

b. Find the change-of-coordinates matrix from B to C.

Practice Problems
1. Let F = {fi,f} and G = {g1,82} be bases for a vector space V, and let P be

a matrix whose columns are [fi]o and [fa];. Which of the following equations is
satisfied by Pforall vin V?

W) [Vlr = Plvlg
i) [vle = Pv]p

2. Let B and C be as in Example 1. Use the resuits of that example to find the change-
of-coordinates matrix from C to B.
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5.1: Eigenvectors and Eigenvalues
Math 220: Linear Algebra

3 -2 -1 2 _
Ex 1: .LetA:[l GJ,u:[ 1], and v = 1 Calculate Au and Av.

What do you notice about either of them?

Definition
An eigenvector of an n X n matrix A is a nonzero vector x such that Ax = Ax for

some scalar A. A scalar A is called an eigenvalue of A if there is a nontrivial solution x
of Ax = Ax; such an x is called an eigenvector corresponding fo A.

Ex 2: ISBJ an eigenvector of I:lf _gJ? If so, find the eigenvalue.

Is[ﬂ an eigenvector of [IA? :gJ? If so, find the eigenvalue.
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5.1: Eigenvectors and Eigenvalues

Ex 3: Show that 5 is an eigenvalue of the matrix B ﬂ, and find a corresponding

eigenvector.

The eigenvector must be , but an eigenvalue may be

So A is an eigenvalue of an nXn matrix, if and only if
(A—/U)x:()

What would another name for the solutions to this equation be?

But we already know that any is a of R”,
so we call it the of A.

4 2 3
Ex 4: Find a basis for the eigenspacegiven A= | -1 1 -3|,A=23

2 4 9
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5.1: Eigenvectors and Eigenvalues

Theorem 1
The eigenvalues of a triangular matrix are the entries on its main diagonal.

Ex 5: Find the eigenvalues of

OO W
OO W
N =

What does it mean for a matrix A to have an eigenvalue of 0?

This means that O is an eigenvalue of A if and only if A is

in5.2.

This will be added to our

Theorem 2
ifvy,..., vr are eigenvectors that comespond to distinct eigenvalues A1,..., A, of

ann X n matrix A, then the set {v1,..., v;.} is linearly independent.

Proof:
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5.1: Eigenvectors and Eigenvalues

Practice Problems

6 -3 1
1.l1s5aneigenvalueof A= |3 0 5|7
2 26

2. If x is an eigenvector of A corresponding to A, what is A3x7?

4.I1f Ais an n X n matrix and A is an eigenvalue of A, show that 2 is an
eigenvalue of 2A.
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- 5.2: The Characteristic Equation
Math 220: Linear Algebra

To find eigenvalues of a square matrix, we are finding non-trivial solutions to the
equation (A—ZI )x =0. By the invertible matrix theorem, this is the same as finding

A suchthat A-Alis . But this occurs when the

is

Ex 1: Find the Eigenvalues of A=B gJ

Theorem The Invertible Matrix Theorem (continued)
Let Abe an nn. X n matrix. Then A is invertible if and only if:

s. The number 0 is not an eigenvalue of A.

1. The determinant_of A is nof zero.
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5.2: The Characteristic Equation

Theorem 3 Properties of Determinants
Let A and B be n X n matrices.

a. A is invertible if and only if det A # 0.
b.det AB = (det A)(det B).
c. det AT =det A.

d. If A is triangular, then det A Is the product of the entries on the main
diagonal of A.

e. A row replacement operation on A does not change the determinant. A
row interchange changes the sign of the determinant. A row scaling also
scales the determinant by the same scalar factor.

We can now determine when the matrix 4 — A/ is not invertible by solving the

 det(4—AI)=0.

Ex 2: Find the characteristic equation and eigenvalues of A=
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5.2: The Characteristic Equation

4 00 O
- _ . 12 300
Ex 3: Find the characteristic equation of 4= 123 0
5 01 —1J
If Ais an nXn matrix, then det(A—ﬂ,I) is a polynomial of | called

the of A.

The eigenvalue of 3 in Ex 3. is said to have

because the factor occurs in the characteristic polynbmial.

Ex 4: The characteristic polynomial of a 7X7 matrixis A7 —81° +1643. Find the

eigenvalues and their multiplicities.
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5.2: The Characteristic Equation
Similarity

Two 71X 7 matrices A and B are considered ’ if there is an invertible
matrix P such that

or
We can also write Q for P! and get

or
Vocabulary: Changing A into is called the

Theorem 4
If n. X n matrices A and B are similar, then they have the same characteristic
polynomial and hence the same eigenvalues (with the same multiplicities).

Proof:
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5.2: The Characteristic Equation

o o] =[5 2]

are not similar even though they have the same eigenvalues.

Warnings:
1. The matrices

2. Similarity is not the same as row equivalence. (If A is row equivalent to B,
then B = EA for some invertible matrix £.) Row operations on a matrix
usually change its eigenvalues.

Practice Problem
Find the characteristic equation and eigenvalues of 4 = [ i _;1}
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5.3: Diagonalization
Math 220: Linear Algebra

30

Ex1: If D=[ Jﬁnd D2,D3, and D*.

0 4

If A= PDP~! for some invertible P and diagonal D, then A¥is also easy to compute.

Ex2: Let A= ’__73 _41J Find a formula for A* given that A=PDP-! where
-2 2] . [1 0
P—[?’ y and D_[O SJ
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5.3: Diagonalization

A square matrix A is said to be if Ais similar to a
diagonal matrix D.

Theorem 5 The Diagonalization Theorem A
An 72 X 11 matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors.

Infact, A = PDP™!, with D a diagonal matrix, if and only if the columns of
P are n linearly independent eigenvectors of A. In this case, the diagonal
entries of D are eigenvalues of A that correspond, respectively, to the
eigenvectors in P.

These eigenvectors, since they are linearly independent, form a

2 2 -1 ‘
Ex 3: Diagonalize the matrix, if possible. A= 1. 3 —1|. Thatis, find an invertible
-1 2. 2

matrix P and diagonal matrix D such that 4 =PDP!. The eigenvalues are A1=1,5.
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5.3: Diagonalization

0 0
Ex 4: Diagonalize the matrix, if possible. A=|1 4 0].
05

fe i N

Theorem 6 _ .
An n X i matrix with n distinct eigenvalues is diagonalizable.

Note: Having distinct eigenvalues is not a requirement for diagonalizable (see Ex 3).

Theorem 7

Let Abe an i X . matrix whose distinct eigenvalues are J, , ..., Ap.
a.Forl<k< P, the dimension of the eigenspace for ;. is less than or
equal to the multiplicity of the eigenvalue Ar.
b. The matrix A is diagonalizable if and only if the sum of the dimensions of
the eigenspaces equals n; and this happens if and only if () the characteristic
polynomial factors completely into linear factors and (/i) the dimension of the
eigenspace for each A; equals the multiplicity of Ar.
c. I A is diagonalizable and By, is a basis for the eigenspace corresponding
to A for each , then the total collection of vectors inthe sets B, ,. . . By

forms an eigenvector basis for B |
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5.3: Diagonalization

Ex 5: Diagonalize the matrix, if possible. 4=

Page 4 of 5
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5.3: Diagonalization

Practice Problems 7
1. Compute A%, where A = 4 -3 )
2 —1
. —3 12 3 2
2.let A = [_2 7] y VI = [1] , and v = [1] . Suppose you are

told that v; and v, are eigenvectors of A. Use this information to
diagonalize A.

3.LetAbe a4 x 4 matrix with eigenvalues 5, 3, and —2, and suppose you

know that the eigenspace for A = 3 is two-dimensional. Do you have
enough information to determine if A is diagonalizable?
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5.4-6: Eigenvalues and Dynamical Systems
Math 220: Linear Algebra

Real Eigenvalues

Ex 1: A stretch of desert in Northwestern Mexico is populated mainly by two species
of animals: coyotes and roadrunners. We wish to model the populations c(t) and r(2)
of coyotes and roadrunners t years from now if the current populations ¢, and ¥, are
known.

From this habitat, the following equations model the transformation of this system

from one year to the next, from time t to time t+1.:

o(t+1) =0.86¢(1) +0.08+(1)
{r(t+l) =—0.12¢(¢)+1.14r(¢)

a.) Write this as a matrix product x(¢+1)=A4x(¢)

We call x(z) the . and %(0) the

This linear transformation is an example of a

b.) Suppose we begin with 100 coyotes and 300 road runners, find a close-form

formula for c(¢) and r(¢).
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5.4-6: Eigenvalues and Dynamical Systems

c.) Suppose we have ¢, =200 and 7, =100, find X(¢)

d.) Suppose we have CQ=1;)=1(X)O, find %(¢). Hint: Write X, in terms of the

eigenbasis.

e.) Sketch a phase portrait to describe this system
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5.4-6: Eigenvalues and Dynamical Systems

Here is another example.

. - - [0.5 0257 . - _
Ex 2: Consider A=[05 075}. Since the sum of each column is 1, this linear

transformation matrix is called a

a.) Find a closed-form expression for 4‘. Hint: Since A is a transition matrix, one of
its eigenvalues will be one.

b.)If %, = m find A%,

c.) Find the steady-state or equilibrium vector x, , = lim 4',

t—e0

Page 3 of 12



5.4-6: Eigenvalues and Dynamical Systems
Complex Eigenvalues

Up to this point, we have only discussed real eigenvalues and real-valued vectors
(including eigenvectors). But the linear algebra world we have established works over

2

complex numbers of the form z =4 +bi where i*=-1.

Ex 3: Find the eigenvalues and a basis for each eigenspace in C" of the matrix E _32}

Then write the eigenvectors X in the form Rez +iIm x

Notice that a real-valued matrix can have complex eigenvalues and eigenvectors.
Notice further that the eigenvalues and vectors come in conjugate pairs.
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5.4-6: Eigenvalues and Dynamical Systems

Ex 4: Next we need to unpack the rotation-scaling matrix ¢ = [Z _bJ.
a

a.) Find the eigenvalues of C.

b.) Let’s call »=|4|=+a*+b?. Then using the picture below, find £ and % in terms
v

of ¢.
Imz
(a, b)
r b
P

- Rez

So C=vr A %
A

where is a scaling matrix and is a rotation matrix.

—

. |5 . . . e e e :
Ex 5: The matrix [5 } is a rotation-scaling matrix. Find its eigenvalues, scaling

factor, and the angle of rotation ¢ .
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5.4-6: Eigenvalues and Dynamical Systems

This brings us back to the idea of matrix factorization. Recall that if A had real
eigenvalues and enough linearly independent eigenvectors, then 4=PDP where the
columns of P were the eigenvectors and D was a diagonal matrix whose diagonal
entries were the corresponding eigenvalues. .

Similarly, let A be a real 2x2matrix with a complex eigenvalue A=a-ib (b#0) and an

associated eigenvector v in C2. Then 4= PCP” where P=[Re? Im#] and Cis the

s i -b
rotation-scaling matrix C = [Z }
a

‘b] such that the

Ex 6: Find an invertible matrix P and a matrix C of the form [:
a

.15 =2
matrix [1 3} has the form 4= pPcpP™
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5.4-6: Eigenvalues and Dynamical Systems
Trajectories of Dynamical Systems

When we began this lesson, we used a predator-prey example involving coyotes and
road runners. We ended that example with a phase portrait that helped us
understand the trajectories based upon various initial state vectors.

Let’s begin by trying to understand how these trajectories work.

08 0. 1100 L. - _ 4 -
Ex 7: Suppose A=[ 0 0.64} and %, _[100:,, find and plof x(l),x(z),x(3),...,x(10)
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5.4-6: Eigenvalues and Dynamical Systems
, . 08 O o .
Ex 7: (revisited) A=[ o o 64} and has eigenvalues 4 =0.8 and 4, =0.64 with

e N _To
corresponding eigenvectors ¥, = [0} and ¥, =[J.

Soif %, = [ﬂ: ¢ +¢é,7,, then ¥, =¢ (0.8)"‘[(1)}“2 (0.64)" m
C

2

FIGURE 1 The origin as an attractor.
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5.4-6: Eigenvalues and Dynamical Systems

0

0 . .
Ex 8: Suppose 4 =[ . 2}. What are the eigenvalues and eigenvectors?.

FIGURE 2 The origin as a repeller.

2 0 . .
Ex 9: Suppose A=[0 0 5}. Here is a phase portrait for it.

FIGURE 3 The origin as a saddle point.

Page 9 of 12



5.4-6: Eigenvalues and Dynamical Systems

Question: In the previous examples, we have focused on diagonal matrices? Is this
reasonable? Is it overly simplistic? Explain.

Ex 10: Show that the origin is a saddle point for the solutions of %, = 4%, where

e 125 —0.75
1-075 125 |
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5.4-6: Eigenvalues and Dynamical Systems

Phase portraits get more interesting with complex eigenvalues

Ex 11: Consider the dynamical system and sketch the trajectory of %,,, = 4%,

where -A=[3 _SJ‘and £0=[OJ .
1 -1 1

Page 11 of 12



5.4-6: Eigenvalues and Dynamical Systems
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6.1: Inner Product, Length, and Orthogonality
Math 220: Linear Algebra

If u and v are vectors in IR” then we can think of them as 71 matrices.

Soulisa matrix and the product of u?v is a matrix.

We will write this as a real number without brackets, and call u? v the

of uand v. Itis also written as u- v and called the

[ r‘vl':
Uy
[w wp - up] =W+t +- -+ Upvy,
L Up
]2 —4
Ex 1: Compute u-v and v-u foru=|-3| and v=| 2
4 1

Theorem 1
Let u, v, and w be vectors in R™, and let ¢ be a scalar. Then

au-v=v-u
b.(u+v)-w=u-w+v-w

c. (cu)-v=c(u-v)=u-(cv)

du-u>0, andu-u=0 ifandonlyifu =0

Page 1 of 6



6.1: Inner Product, Length, and Orthogonality

(cros +- -+ pup) - W =iy - W) +- -+ p( - W)

Definition |
The length {or norm) of v is the nonnegative scalar ||v|| defined by

vl =¥ =/ +eh+--+ok, and |v|P=v-v

o
In R? this is essentially the (a. b)
theorem. 15 N
\“-.. .
B I
llev]l = I ||v]]
A vector whose length is one is called the vector.

if we divide a non-zero vector v by it’s length,

get a unit vector in the same direction as v. This is called

we

Ex2: Let V= . Find a unit vector u in the same direction as v.

£
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6.1: Inner Product, Length, and Orthogonality

3/4

Ex 3: Let W be a subspace of R* spanned by X=[ )

J. Find a unit vector basis for W.

How do we find the distance between two numbers on a number line?

Definition -
Foruand vin R®, the distance between u and v, written as dist(u, v), is
the length of the vectoru — v. Thatis,

dist(u, v} = |ju—v||

Ex4: Compute the distance between the vectors u = (7,1) and v = (3,2).

A3
v
i —_ Jlu—¥il
i u
—+—— S ——
1 \/
B-¥
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6.1: Inner Product, Length, and Orthogonality

Ex 5: Find the formula for the distance between two vectors
u=(uy,u,,uy) and v=_v,v,,v,)

Defini_tion.
Two vectors u and v in R® are orthogonal (to each other)ifu-v = 0.

Theorem 2 The Pythagorean Theorem
Two vectors u and v are orthogonal if and only if ||u + v||* = Hull +|Iv°.

If a vector z is orthogonal to every vector in a subspace W of IR”, then z is said to be
. The set of all of these orthogonal

vectors to W is called the of W
and is denoted by W .
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6.1: Inner Product, Length, and Orthogonality

Ex6: Let Wbe a plane through the origin in R3, and let L be the line through the
origin and perpendicular to W. If z and w are nonzero, z is on L, and w is in W,
then the line segment from 0 to z is perpendicular to the line segment from 0 to
w; thatis, z - w = (. See Figure 7. So each vector on L is orthogonal to
every w in W. In fact, L consists of all vectors that are orthogonal to the w's in
W, and W consists of all vectors orthogonal to the z's in L. That is, -

L=W* and W=L*

1. A vector x is in W if and only if X is orthcgonal to every vector in a set
that spans V.

2. W+ is a subspace of R".

Remember our comment in 4.6 that the Null Space and Row Space are essentially

orthogonal to each other.

ﬂq ~ A \PLE ,/Jjﬂ
ro? g Co

Theorem 3
Let A be anm X n matrix. The orthogonal complement of the row

space of A is the null space of A, and the orthogonal complement of
the column space of A is the null space of AT:

(Row A)* = Nul A and (Col A)" = Nul A7
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6.1: Inner Product, Length, and Orthogonality

Ex 7: Using the Null Space and Row Space of Ex 5 from 4.5, check that random vectors
from each are orthogonal to each other.

Ex8: Showthat W:V = ”u“ ”V” COS U where Vv is the angle between the two
vectors, using the Law of Cosines,

2 2 n2
la —vI* = Jjul]” + [[v]]" — 2][all |lv]lcos v

IHI‘"E}
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6.2: Orthogonal Sets
Math 220: Linear Algebra

if each pair of

A set of vectors ‘{ul,...,up} is called an

distinct vectors from the set is orthogonal. That is, when i # J.

Ex 1: Determine whether the set of vectors is orthogonal.

a) 2 —6
_7 } ] _3 5
-1 9
I B B . T
b) 3 _1 3
-2 3 8
1 1- _3 ;| 7
31 L 41 L0l
Theorem 4

If § = {u,..., uy} isan orthogonal set of nonzero vectors in R* , then §
s linearly independent and hence is a basis for the subspace spanned by S.

Proof:
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6.2: Orthogonal Sets
Definition - ‘ :
An orthogonat basis for a subspace W of R® s a basis for Wthat is alsc an
orthogonal set.

Theorem 5
Let {uy,..., up} be an orthogonal basis for a subspace Wof R®. For each
y in W, the weights in the linear combination

y-_:.clul._l’_..._l;_epup

are given by
., y-u; ..
¢ = (j=1$*~-‘sp)
;- uy

4
Ex2: Thevector V= :180 is in the subspace W with orthogonal basis from Ex 1b).

117 | [ 3] [-1] [3]
Express v as a linear combination of the orthogonal basis. -2 3 8

1 ) _3 ! "
3] L 41 L0
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6.2: Orthogonal Sets
An Orthogonal Projection -

- - y'l.l )

Y =Prop y =, ;u

_ 11 —4]
Ex3: Compuie the orthogonal projection of [7] onto the iine through [ ﬂ and the origin.

|1 : .
Then write [7] as a sum of two orthogonal vectors. Also, observe geometrically.

=
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6.2: Orthogonal Sets
Ex 4: Find the distance from the vector [;] to the line through [_24] (from Ex 3).

Notice that the orthogonal projection formula matches the weights of the orthogonal
basis terms in theorem 5. Theorem 5 decomposes a vector into a sum of orthogonal
projections onto one-dimensional subspaces (lines). 22

_§,= projection-ontou,
hd ;

L3

In R?, if we have an orthogonal basis {ul,uz}

then any y€ R? can be written as Y
_ oy yugz _ LA g
Y = upuy W T ugm, W2 .

“w, §, = projection onto u,

In physics we use this to decompose force on an object.

A set of vectors {ul,...,,up} is called an if itis an
orthogonal set of . If Wis spanned by this set,
then the set is an for W.

The simplest orthonormal basis for R”is { }

Any nonempty subset of this standard basis is orthonormal as well.
Page 4 of 6



6.2: Orthogonal Sets
Ex 5: Determine whether the set of vectors is 1/4/10 3//10 0

orthonormal. Is it an orthonormal basis for R3? 3/V20 |, | -1/v/20 |, | —1//2
3/v20] | -1//20 1/4/2

Theorem 6 _
An m x n. matrix U has orthonormal columns if and only if 7T/ — .

Proof:

Theorem 7
Let U be an'm X nn matrix with orthonormal columns, and let x and y be in
R®. Then
a. [[Ux| = ||x]|
b. (Ux)-(Uy)=x-y
¢.(Ux)-(Uy) =0 tfandonlyifx-y =0

 Page50f6



6.2: Orthogonal Sets

1 _1
5 R
Ex6: Let U= 71_37 0 |and x{‘ﬂ. Verify that ||Ux||=||x||
1 1
32
An is a square invertible matrix U,

suchthat U1 =UT. By theorem 6, it has orthonormal columns.

The matrix formed from the vectors from Ex 5 is an example.

Yyio Ym0
YN RV, BT,
VB YR 1YY

Practice Problem

1. Let U and x be as in example 6, and let y=t}l_§}. Verify that (Ux)-(Uy)=x"y
> _
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6.3 & 6.4: Orthogonal Projections & Gram-Schmidt
Math 220: Linear Algebra

Big Picture: We are building to a method (Gram-Schmidt Orthogonalization) that will
allow us to use an existing basis to create an orthonormal basis. These concepts will

then help us to develop a method for calculating least square models.

Given a vector y and a subspace W in R” there is a vector Y€ W such that

1) § is the unique vector in W for which y —§ is orthogonal to W

2) § is the unique vector in W closest to y

Theorem 8 The Orthogonal Decomposition Theorem
Let Wbe a subspace of R*. Then each y in R® can be written uniquely in

the form
y=y+sz @)

where § isin Wand zis in WL, In fact, if {uy;...,u,} Is any orthogonal
basis of W, then

2)

A i SR

“1 "

“p“p
andz=y—¥.

| y _ s 1 5
Ex1: Let W—Spap{ul,uz}. Write y as the sum y=|3|u,=| 3 =1
of a vectorin W and a vector orthogonal to V. 5 4
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6.3 & 6.4: Orthogonal Projections & Gram-Schmidt

Theorem 9 The Best Approxlmatlon Theorem
Let W be a subspace of R, lety be any vectorin R®, andlety be the

orthogonal projection of y onto W. Then ¥ is the closest point in Wto y, in the
sense that

Iy — Il < lly — vl (3)

for all v in W distinct from ?

'1%“ .

5
Ex2: AsinEx1, % is the closest point in W=Spanlu1= 3 ,u,=|1|;toy
4

b

Find the distance from y to /4
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6.3 & 6.4: Orthogonal Projections & Gram-Schmidt

Practice Problems

4] —2 L]
Use the fact that 1ty and ug are orthogonal to compute Projw y.

-7 -1 -9
f.letwy=| 1 ‘,u2=[ 1 ,y:[ 1], and W = Span {u;,us}.

2. Let Wbe the subspace spanned by the u's, and write y as the sum of a
vector in W and a vector orthogonal to W.

[ 4] 1] 1] P11
3l 1] 3 0

y= ,-u]_: 0 " ‘I.l2= 1 ,u3_= 1
[ 1) 1 | —2] | 1]
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6.3 & 6.4: Orthogonal Projections & Gram-Schmidt

The Gram-Schmidt Process

3 8 |
Ex3: Let W =Span:ix,=| 0 ,X,=| 5 |/, constructan orthogonal basis {VI,Vz.},
-1 -6
Ex 4:
(1] (0] (0]
| 1 1 0 : o
Letx; = NE Xy = RE and x3 = 1| Then {x;, X2, X3} is
1) 1] 1.

clearly Iinea-rly independent and thus is a basis for a subspace W of R4,
Construct an orthogonal basis for W.
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6.3 & 6.4: Orthogonal Projections & Gram-Schmidt

Theorem 11 The Gram-Schmidt Process ,
Given a basis {xl, I xp} for a nonzero subspace Wof R®, define

Vi =X;
. Xg-V1
V2 =X — 35 V1
X3-¥1 __ Xgva3

V3 =X3— ¥1'¥v1 Vi Ya-vy

[

. Xp Vi XpVa XpVp-1 _
v —_ —— — — j —— R B e -
p xp "1 -vl vl V2.vz v 2 vp—l 'Vp-l VP_I

Then {vy,..., vy} is an orthogonal basis for W. In addition

Span {vi,..., v&} =Span {x1,..., %} for1 <k<p

The result of this is that every nonzero subspace W in R” has an orthogonal basis.

An orthonormal basis is constructed easily by normalizing all the v, ’s to unit vectors.

Ex 5: Re-write the orthogonal basis found in Ex 3 as an orthonormal basis.
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6.3 & 6.4: Orthogonal Projections & Gram-Schmidt

Practice Problems
1 1/3
4. Let W = Span {x;, Xz}, wherex; = | 1| andxy= | 1 /3
1 —2/3

Construct an orthonormal basis for W.

2. Use the Gram—-Schmidt process to produce an orthogonal basis for W.

1] 6] 6 |
W =Span{x,,X,,X,} where X, = % X, = :g X3 = 2
1 —4 -3
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6.5 & 6.6: Least-Squares Problems
Math 220: Linear Algebra

We will now look at the case where AXx=b has no solution. What would be “closest”
possible solution X? This is called the Least-Squares problem, and it mirrors our Best-

Approximation Theorem from 6.3.

Definition
fAism xn andbisin R™, aleast-squares solutionof Ax = b isanX

in R” such that
[ — Ax]| < ||b - Ax|

for all x in R™.

Theorem 13
The set of least-squares solutions of Ax = b. coincides with the nonempty

set of solutions of the normal equations AT Ax = ATb.
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6.5 & 6.6: Least-Squares Problems

Ex 1: Find a least-squares solution of the inconsistent system Ax=Db for

-1 2
A=} 2 -3|,b=
-1 3

Ex2: Find a least-squares solution of the inconsistent system Ax=b for

L B
[ T S e Y o |

1

3
|8
12

I =
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6.5 & 6.6: Least-Squares Problems

Theorem 14 _
Let Abe an m X n matrix. The following statemenis are logically equivalent:

a. The equation Ax = b has a unique least-squares solution for each b in R™.
b. The columns of A are linearly independent.
c. The matrix AT A is invertible.

When these statements are frue, the least-squares solution X is given by

% = (AT4) 'A% 4)

The distance from b to Ax is called the

Ex 3: Find the least-squares error of Ex 1.

If the columns of A are orthogonal, the least-squares solution is even easier to find.

Ex 4: Verify the columns of A are orthogonal and find a least-squares solution of AX=Db.

- — -

11 0 12

A 10 -1 b= 5
01 1 6

-1 1 -1] | 6]
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6.5 & 6.6: Least-Squares Problems

Practice Problems

1 -3 -3 5
1.letA=11 5 1 andb = | —3| . Find a least-squares solution of
1 7 2 -5

Ax = b, and compute the associated least-squares error.

Now we’re going to look at finding a best-fit line for a set of data points, also known as
linear-regression.

Y Datapoint_ [Predicted y-value|Observed y-value|
~ Ay
. S By + By1) Bo + Az = 0
Point on line ! Residual Bo + Prza = 2
Residual - |
y=By+Bx B
s — s Po+Pizn =
.l'l .l} X " | B
(1 z1] (1 |
1 =z Bo 2
XB=y, whereX=| ,ﬁ=[ ] y=|¥
3 5
1 T, L Yn |
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6.5 & 6.6: Least-Squares Problems

Ex5: Find the equation y=f + fx of the least-squares line that best fits the data
points. (1,1),(4,2),(8,4);(1 1,5)

Ex 6: Find the quadratic regression equation y = + S x+ f3,x* of the least-squares
line that best fits the data points. (—2,12),(—1,5),(0,3),(1,2),(2,4).

Page 5 of 6



6.5 & 6.6: Least-Squares Problems

The General Linear Model

in some applications, it is necessary to fit dafa points with something other than a siraight iine. In the examples that
follow, the matrix equation is still X = y, but the specific form of X changes from one problem fo the next.
Statisticians usually introduce a residual vector £ , defined by €= ¥ — X §, and write

y=Xp+¢

Any equation of this form is referred to as a linear model. Once X and y are determined, the goal is to minimize the
length of £ , which amounts to finding a least-squares solution of X = ¥. In each case, the least-squares solution

B is a solution of the normal equations

XTxX8=X"y

Ex 7: A certain experiment produces the data (1, 7.9), (2, 5.4), and (3, -0.9). Describe
the model that produces a least-squares fit of these points by a function of the form
y=Acosx+Bsinx
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