6.5 & 6.6: Least-Squares Problems
Math 220: Linear Algebra

We will now look at the case where AX=Db has no solution. What would be “closest”
possible solution X ? This is called the Least-Squares problem, and it mirrors our Best-
Approximation Theorem from 6.3.

Definition
IfAism x n andbisin R™ aleast-squares solution of AX =b isanX
in R™ such that

b — Ax|| < ||b— Ax|
for all x in IR™.
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Theorem 13
The set of least-squares solutions of Ax = b. coincides with the nonempty
set of solutions of the normal equations AT Ax — ATh.
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6.5 & 6.6: Least-Squares Problems

Ex 1: Find a least-squares solution of the inconsistent system AX=b for
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Ex 2: Find a least-squares solution of the inconsistent system Ax=Db for
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6.5 & 6.6: Least-Squares Problems

Theorem 14

Let A be an m x n matrix. The following statements are logically equivalent:

a_The equation Ax = b has a unique least-squares solution for each b in R™.

b. The columns of A are linearly independent.

c. The matrix AT A is invertible.

When these statements are true, the least-squares solution X is given by

% =(4aT4) 4T (4)

The distance from b to Ax is called the |4as) - 5‘&’;,\):9; e s
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Ex 3: Find the least-squares error of Ex 1. -
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If the columns of A are orthogonal, the least-squares solution is even easier to find.

Ex 4: Verify the columns of A are orthogonal and find a least-squares solution of AX=Db.
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6.5 & 6.6: Least-Squares Problems

Practice Problems
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Ax = b, and compute the associated least-squares error.
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Now we’re going to look at finding a best-fit line for a set of data points, also known as
linear-regression.
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6.5 & 6.6: Least-Squares Problems

Ex5: Find the equation y= ﬁo+,b’1x of the least-squares line that best fits the data

points. [(1,1),(4,2),(8,4),(1 1,5)
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Ex 6: Find the quadratic regression equation ¥ =, + fx+ f,x? of the least-squares
line that best fits the data points. (—Z,fi),(—1,5],(O,§),(1,2],(2,4‘).
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6.5 & 6.6: Least-Squares Problems

The General Linear Model
In some applications, it is necessary to fit data points with something other than a straight line. In the examples that

follow, the matrix equation is still X8 = ¥, butthe specific form of X changes from one problem to the next.
Statisticians usually introduce a residual vector € , defined by €= y — X8, and write

y=Xg+¢

Any equation of this form is referred to as a linear model. Once X and y are determinad, the goal is to minimize the
length of € , which amounts to finding a least-sguares solution of X8 = ¥. Ineach case, the least-squares solution

B is a solution of the normal equations

X"Xxp=X%

9. A certain experiment produces the data (1, 7.8‘5 (2, 5.4'3. and (3, —.g)'.
Describe the model that produces a least-squares fit of these points by a
function of the form
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