6.1: Inner Product, Length, and Orthogonality
Math 220: Linear Algebra

If u and v are vectors in IR” then we can think of them as 7X1 matrices.

Soulisa 1=V matrix and the product of u/visa b x matrix.

We will write this as a real number without brackets, and call ulv the _ /=r'er

jmolw of uand v. Itis also written as u-vand called the do+
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Ex 1: Compute u-v and v-u foru=|—-3| and v=| 2
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Theorem 1
Let u, v, and w be vectors in R", and let ¢ be a scalar. Then

au-v=v-u
b.{u+v) w=u-w+v-w

c. (cu)-v=c(u-v) =u-(cv)

du-u>0, andu-u=0 ifandonlyifu =0
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6.1: Inner Product, Length, and Orthogonality
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Definition
The length (or norm) of v is the nonnegative scalar ||v|| defined by

VIl = v¥% = /R +d+- -+ ok, and v = vy
\

In R? this is essentially the (e, b)
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A vector whose length is one is called UMY vector.
A
If we divide a non-zero vector v by it’s length, Hwa¥ 15 mvih})% b; Hvil we
get a unit vector in the same direction as v. This is called Po rmal J=z:f+)g
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Ex2: Let V= 4| Find a unit vector u in the same direction as v.
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6.1: Inner Product, Length, and Orthogonality
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Ex 3: Let W be a subspace of R? spanned by x{ )

R R
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}. Find a unit vector basis for W.

How do we find the distance between two numbers on a number line?
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Definition -
Foruand vin R®, the distance between u and v, written as dist(u, v), is
the length of the vector u — v. That s,

dist(u, v) = flu—v]|

Ex4: Compute the distance between the vectors u = (7,1) and v = (3,2).

B-V=(30) - (3,2) = (4,20)
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6.1: Inner Product, Length, and Orthogonality

Ex 5: Find the formula for the distance between two vectors

u=(u,u,,u;) and v=(v,,v,,v;)

disr(G,v) = (a-at = \/(,M, -V) 4 (s, - Ve (g - vy
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Definition o
Two vectors u and v in R® are orthogonal (to each other)ifu-v = 0.

Theorem 2 The Pythagorean Theorem | |
Two vectors u and v are orthogonal if and only if |[u +v]|* = |[ul|® + ||v]]*.
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If a vector z is orthogonal to every vector in a subspace W of R”, then z is said to be
o Mnhoéoﬂa [ - . The set of all of these orthogonal

vectors to W is called the 0'/”44/1:7%0904\ co w'p(;‘Me-M?- of W

and is denoted by W+,
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6.1: Inner Product, Length, and Orthogonality

Ex 6: Let W be a plane through the origin in [R3 , and let L be the line through the
origin and perpendicular to W. If z and w are nonzero, zison L, and wis in W,
then the line segment from 0 to z is perpendicular to the line segment from 0 to
w; thatis, z- w = (. See Figure 7. So each vector on L is orthogonal to
every w in W. In fact, L consists of all vectors that are orthogonal to the w's in
W, and W consists of all vectors orthogonal to the 2's in L. That is, T
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1. A vector x is in W if and only if x is orthogonal to every vector in a set
that spans W.

e e

2. W is a subspace of R".

Remember our comment in 4.6 that the Null Space and Row Space are essentially

orthogonal to each other.
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Theorem 3
Let A be an m X n matrix. The orthogonal complement of the row

space of A is the null space of A, and the orthogonal complement of
the column space of A is the null space of AZ:

(Row A)" =Nul 4 and (Col A)" = Nul AT
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6.1: Inner Product, Length, and Orthogonality

Ex 7: Using the Null Space and Row Space of Ex 5 from 4.6, check that random vectors
from each are orthogonal to each other.
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Ex8: Showthat WV = Iu” ”V” COS U where Vv is the angle between the two
vectors, using the Law of Cosines,
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