5.2: The Characteristic Equation
Math 220: Linear Algebra

To find eigenvalues of a square matrix, we are finding non-trivial solutions to the

equation (A—/U)x: 0. By the invertible matrix theorem, this is the same as finding

A suchthat A—Alis 5‘7»:%.,\0.{\/;00.; o 2eh' bl . But this occurs when the
determ; mart is 22 o
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Theorem The Invertible Matrix Theorem (continued)
Let A be an nn X nn matrix. Then A is invertible if and only if.

s. The number 0 is not an eigenvalue of &. «—— W& saw +his iw
, A the prev jovs solvhon,
t. The determinant of A is not zero.
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Let A and Bbe n x n matrices.

a. A is invertible if and only if det A £ 0.
b. det AB = (det A)(det B).

c. det AT — det A. This is pAa r~Mev ‘ar‘]n
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d. If A is triangular, then det A is the product of the entries on the main
diagonal of A.

e. A row replacement operation on A does not change the determinant. A
row interchange changes the sign of the determinant. A row scaling also
scales the determinant by the same scalar factor.

We can now determine when the matrix A — A/ is not invertible by solving the

C..l’\cn\a.&{-*wﬁr-h‘c_. e.qrva‘h-@:\/ , det(A—ﬂl):O.
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Ex 3: Find the <haracteristic equation of 4= 2 380 ard @igsvalves
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The eigervalues are
X =4, A =3 (plggbrigumltiphieityg® | 5 = -

If Ais an nxn matrix, then det(A—Al) is a polynomial of c‘éﬁfﬁ-a o

called the chacacterist e PDIZ’ Lo rMial of A.

The eigenvalue of 7 in Ex 3. is said to have (alogvraic) mulh plio'ry T
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because Z-/» _occurs tWice i® vhe partactenistic
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Ex 4: The Characteristic polynomial of a 7X7 matrixis A7 —84°+16A>. Find the
eigenvalues and their multiplicities.
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Similarity 2chopy whed we s+vo°2 chageopals zatop,

Two 71 X7 matrices A and B are considered $3 ™, o if there is an invertible
matrix P such that
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Theorem 4

If n. X n matrices A and B are similar, then they have the same characteristic
polynomial and hence the same eigenvalues (with the same multiplicities).
Proof: [fur similar A avd & ba, &3 ves

= A ivverbble P s+ B=P lap

= B-OT = P AP-AF e = ¢ (A-AT)F
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Warnings:
1. The matrices

o] = [o 3]

are not similar even though they have the same eigenvalues.

2. Similarity is not the same as row equivalence. (If A is row equivalent to B,
then B = E'A for some invertible matrix £.) Row operations on a matrix
usually change its eigenvalues.
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Practice Problem

1 —4
Find the characteristic equation and eigenvalues of A = !4 } "
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