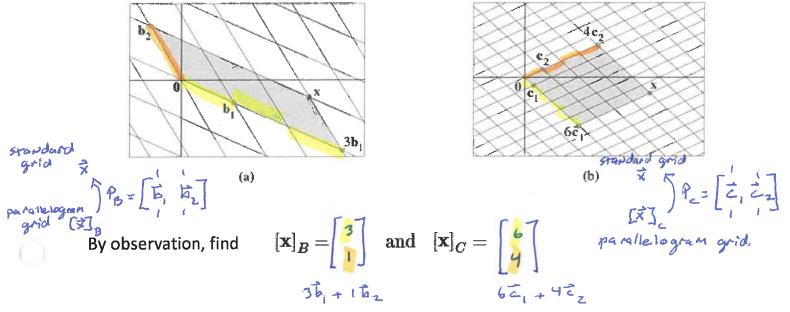
4.7: Change of Basis

Math 220: Linear Algebra

We are now going to look at converting a vector x in one coordinate system into another coordinate system – same vector, different coordinate representation.

Consider the following vector spaces spanned by $\left\{\mathbf{b}_1,\mathbf{b}_2\right\}$ and $\left\{\mathbf{c}_1,\mathbf{c}_2\right\}$ respectively.



Ex 1: Consider two bases $B=\{\mathbf{b_1},\mathbf{b_2}\}$ and $C=\{\mathbf{c_1},\mathbf{c_2}\}$ for a vector space V, such that $\mathbf{b_1}=\mathbf{4c_1}+\mathbf{c_2}$ and $\mathbf{b_2}=-6\mathbf{c_1}+\mathbf{c_2}$

Suppose $\mathbf{x}=3\mathbf{b}_1+\mathbf{b}_2$ (that is, $[\mathbf{x}]_B={3\brack 1}$), find $[\mathbf{x}]_C$.

$$\Rightarrow \begin{bmatrix} \vec{X} \end{bmatrix}_{c} = \begin{bmatrix} 3\vec{b}_{1} + \vec{b}_{2} \end{bmatrix}_{c}$$

$$= 3\begin{bmatrix} \vec{b}_{1} \end{bmatrix}_{c} + 1\begin{bmatrix} \vec{b}_{2} \end{bmatrix}_{c}$$

$$= \begin{bmatrix} \vec{b}_{1} \end{bmatrix}_{c} \begin{bmatrix} \vec{b}_{2} \end{bmatrix}_{c} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$
Page 1 of 4

4.6 XX: Change of Basis

Theorem 15

Let $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $C = \{\mathbf{c}_1, \dots, \mathbf{c}_n\}$ be bases of a vector space V. Then there is a unique $n \times n$ matrix $\underset{C \leftarrow B}{P}$ such that

$$[\mathbf{x}]_C = \underset{C \leftarrow B}{P}[\mathbf{x}]_B \tag{4}$$

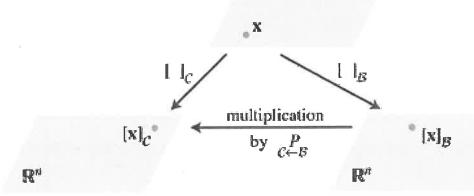
The columns of $\underset{C \leftarrow B}{P}$ are the C-coordinate vectors of the vectors in the basis B. That is,

$$P_{C \leftarrow B} = [[\mathbf{b}_1]_C \quad [\mathbf{b}_2]_C \quad \dots \quad [\mathbf{b}_n]_C]$$

 $C \leftarrow B$ $P = [[\mathbf{b}_1]_C \quad [\mathbf{b}_2]_C \quad \dots \quad [\mathbf{b}_n]_C]$ think of P as a linear combination of the columns of CEB. The matrix product is a

C- word vector, so the cois P is the charge of coordinates matrix from B to c of fe

should also be c. cocord vectors



Why are the columns of P = P linearly independent? The columns form a basis for the vector space => Linearly independent

So $P_{C \leftarrow B}$ is invertible.

So equation (4) above can be re-written as $(\mathbf{x})_C = [\mathbf{x}]_B$

Since P is the matrix that converts B-coordinates to C-coordinates, what should P is the matrix that converts P-coordinates to P-coor

4.64XXChange of Basis

$$\left(egin{array}{c} P \ C \leftarrow B \end{array}
ight)^{-1} = P \ B \leftarrow C$$

Change of Basis in ℝⁿ

If $B=\{\mathbf{b}_1,\dots,\mathbf{b}_n\}$ and ε is the *standard basis* $\{\mathbf{e}_1,\dots,\mathbf{e}_n\}$ in \mathbb{R}^n , then $[\mathbf{b}_1]_{\varepsilon}=\mathbf{b}_1$, and likewise for the other vectors in B. In this case, P is the same as the change-of-coordinates matrix P_B introduced in Section 4.4, namely,

$$P_B = [\mathbf{b_1} \quad \mathbf{b_2} \quad \cdots \quad \mathbf{b_n}]$$

However, to change coordinates between two non-standard bases in \mathbb{R}^n , we will need to use Theorem 15 and find coordinate vectors of the $\frac{600}{200}$ basis

Ex 2:

Let
$$\mathbf{b}_1=egin{bmatrix} -6 \\ -1 \end{bmatrix}$$
 , $\mathbf{b}_2=egin{bmatrix} 2 \\ 0 \end{bmatrix}$, $\mathbf{c}_1=egin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\mathbf{c}_2=egin{bmatrix} 6 \\ -2 \end{bmatrix}$, and consider

the bases for \mathbb{R}^2 given by $B=\{\mathbf{b_1},\mathbf{b_2}\}$ and $C=\{\mathbf{c_1},\mathbf{c_2}\}$. Find the change-of-coordinates matrix from B to C.

We want so find of B

we need
$$b_1 \leftarrow b_2$$
 in terms of $c_1 \leftarrow c_2$

where $c_1 \leftarrow c_2$
 $c_2 \leftarrow c_3$
 $c_3 \leftarrow c_4$
 $c_4 \leftarrow c_2$
 $c_4 \leftarrow c_2$
 $c_4 \leftarrow c_2$
 $c_4 \leftarrow c_2$
 $c_4 \leftarrow c_3$
 $c_4 \leftarrow c_4$
 $c_4 \leftarrow c_$

$$\Rightarrow \text{ solve } \begin{bmatrix} 2 & 6 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -6 \\ -1 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & 6 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

=) row reduce
$$\begin{bmatrix} 2 & 6 & | -6 \\ -1 & -2 & | -1 \end{bmatrix}$$
 and $\begin{bmatrix} 2 & 6 & | ^2 \\ -1 & -2 & | 0 \end{bmatrix}$
which combine to $\begin{bmatrix} 2 & 6 & | -6 & 2 \\ -1 & -2 & | -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & | 4 & -2 \\ 0 & 1 & | -4 & 1 \end{bmatrix}$

$$\Rightarrow \vec{b}_1 = q\vec{c}_1 - 4\vec{c}_2 \qquad q_N d \qquad \vec{b}_2 = -2\vec{c}_1 + 1\vec{c}_2 \qquad conclusion$$

$$con \qquad con \qquad$$

4.64XXChange of Basis

Ex 3: Let
$$\mathbf{b_1} = \begin{bmatrix} 7 \\ 5 \end{bmatrix}$$
, $\mathbf{b_2} = \begin{bmatrix} -3 \\ -1 \end{bmatrix}$, $\mathbf{c_1} = \begin{bmatrix} 1 \\ -5 \end{bmatrix}$, $\mathbf{c_2} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$ and consider the bases for \mathbb{R}^2 given by $B = \{\mathbf{b_1}, \mathbf{b_2}\}$ and $C = \{\mathbf{c_1}, \mathbf{c_2}\}$.

- a. Find the change-of-coordinates matrix from C to B.
- b. Find the change-of-coordinates matrix from B to C.

Practice Problems

1. Let $F = \{\mathbf{f_1}, \mathbf{f_2}\}$ and $G = \{\mathbf{g_1}, \mathbf{g_2}\}$ be bases for a vector space V, and let P be a matrix whose columns are $[\mathbf{f}_1]_G$ and $[\mathbf{f}_2]_G$. Which of the following equations is satisfied by P for all v in V? P = [f,] [f,]

(i)
$$[\mathbf{v}]_F = P[\mathbf{v}]_G$$

* (ii)
$$[\mathbf{v}]_G = P[\mathbf{v}]_F$$
 this is $G = F$

Let B and C be as in Example 1. Use the results of that example to find the changeof-coordinates matrix from C to B.

$$P = \begin{bmatrix} 4 & -6 \end{bmatrix} \Rightarrow P = \frac{1}{10} \begin{bmatrix} 1 & 4 \\ -1 & 4 \end{bmatrix}$$

$$Page 4 \text{ of } 4$$

$$Page 4 \text{ of } 4$$

$$Page 4 \text{ of } 4$$