4.2: Null & Col Spaces and Linear Transformations Math 220: Linear Algebra

Remember that a homogeneous system of equations

$$5x_1 + 21x_2 + 19x_3 = 0$$
$$13x_1 + 23x_2 + 2x_3 = 0$$
$$8x_1 + 14x_2 + x_3 = 0$$

Can be written in matrix form as $A\mathbf{x} = \mathbf{0}$ where

$$A = \begin{bmatrix} 5 & 21 & 19 \\ 13 & 23 & 2 \\ 8 & 14 & 1 \end{bmatrix}$$

The solution set is all the vectors X that satisfy

Definition

The null space of an $m \times n$ matrix A, written as Nul A, is the set of all think solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. In set notation, Null $A = \{\mathbf{x} : \mathbf{x} \text{ is in } \mathbb{R}^n \text{ and } A\mathbf{v} = \mathbf{0}\}$

$$\operatorname{Nul} A = \{\mathbf{x} : \mathbf{x} \text{ is in } \mathbb{R}^n \text{ and } A\mathbf{x} = \mathbf{0}\}$$

Ex 1: Let A be the matrix defined above. Determine whether the vector $\mathbf{u} = \begin{bmatrix} 5 \\ -3 \end{bmatrix}$ belongs to the null space of A

check
$$\vec{J}$$
: $\begin{bmatrix} 5 & 21 & 19 \\ 13 & 23 & 2 \\ 8 & 14 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ -3 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ so $\vec{\chi} \in H \cup A$

Find the
$$\frac{1}{3}$$
 $\frac{2}{3}$ $\frac{2}{2}$ $\frac{1}{9}$ $\frac{1}{$

Theorem 2

The null space of an m imes n matrix A is a subspace of \mathbb{R}^n . Equivalently, the set of all solutions to a system $A\mathbf{x}=\mathbf{0}$ of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^n .

Proof:

当なけるとから

Ex 2: Let H be the set of vectors in \mathbb{R}^3 whose coordinates a, b, and c satisfy the equations 2a+3b=5c and 6a-5c=2b

Show that H is a subspace of \mathbb{R}^3 .

(Create 2 dependence relations between them.)

$$H = NOIA$$

i. H is a subspace

of \mathbb{R}^3 .

Ex 3: Find a spanning set for the null space of the matrix $A = \begin{bmatrix} 1 & 3 & 5 & 0 \\ 0 & 1 & 4 & -2 \end{bmatrix}$. solve Ax = 0

$$\begin{bmatrix} 1 & 3 & 5 & 0 & 0 \\ 0 & 1 & 4 & -2 & 0 \end{bmatrix} R_{1} - 3R_{2} - 3R_{3}$$

$$\begin{bmatrix} 7 & \times & \times & \times \\ 0 & 1 & 4 & -2 & 0 \end{bmatrix} R_{1} - 3R_{2} - 3R_{3}$$

$$\begin{bmatrix} 7 & \times & \times & \times \\ 0 & 1 & 4 & -2 & 0 \end{bmatrix} + \times_{4} \begin{bmatrix} -6 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$

$$x_3 = x_3 (free)$$

 $x_4 = x_4 (free)$

$$\Rightarrow \text{ pol } A = \text{Span} \left\{ \begin{bmatrix} 7 \\ -4 \\ 1 \end{bmatrix}, \begin{bmatrix} -6 \\ 2 \\ 0 \end{bmatrix} \right\}$$

Two properties of null spaces that contain nonzero vectors that we see from the last example.

- 2. The number of vectors in the spanning set of Nul A is equal to the number of $\underbrace{\text{free}}_{\text{variables}}$ in the equation $A\mathbf{x} = \mathbf{0}$.

Definition

The column space of an $m \times n$ matrix A, written as Col A, is the set of all linear combinations of the columns of A. If $A = [a_1 \ \cdots \ a_n]$, then

$$\operatorname{Col} A = \operatorname{Span} \{\mathbf{a}_1, \dots, \mathbf{a}_n\}$$

Theorem 3

The column space of an m imes n matrix A is a subspace of \mathbb{R}^m .

$$\boxed{\operatorname{Col} A = \{\mathbf{b} : \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \text{ in } \mathbb{R}^n\}}$$

Ex 4: Find a matrix A such that $W = \operatorname{Co} A$.

$$\omega = \left\{ \begin{bmatrix} b - c \\ 2b + c + d \\ 5c - 4d \end{bmatrix} : b, c, d \text{ real} \right\}$$

$$\downarrow \qquad \qquad \downarrow$$

$$A \times = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 1 \\ 0 & 5 & -4 \end{bmatrix} \begin{bmatrix} b \\ c \\ d \end{bmatrix} \quad \text{And} \quad \text{Col } A = \text{span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 5 \end{bmatrix}, \begin{bmatrix} 0 \\ -4 \end{bmatrix} \right\}$$

The column space of an m imes n matrix A is all of \mathbb{R}^m if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution for each \mathbf{b} in \mathbb{R}^m .

Ex 5: Given the matrix $A = \begin{bmatrix} 1 & 1 & 3 & 1 \\ 2 & 1 & 5 & 4 \\ 1 & 2 & 4 & -1 \end{bmatrix}$, answer the following. $A = \begin{bmatrix} 1 & 1 & 3 & 1 \\ 2 & 1 & 5 & 4 \\ 1 & 2 & 4 & -1 \end{bmatrix}$

a) Find \mathbb{R}^k that Null A is a subspace of.

b) Find \mathbb{R}^k that Col A is a subspace of.

d) Find a nonzero vector in Col A.

Pick
$$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ or their sum $\begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix}$

e) Is $\begin{bmatrix} 1 \\ 4 \\ -2 \\ 1 \end{bmatrix}$ in the Null A? Is $\begin{bmatrix} 6 \\ 9 \\ 2 \\ 4 \end{bmatrix}$ in the Null A? $\begin{bmatrix} 2 \\ 3 \\ 2 \\ 4 \end{bmatrix}$ in the Null A?

ull
$$A$$
? Is $\begin{bmatrix} 6 \\ 9 \\ 3 \end{bmatrix}$ in the Null A ?

and Not A = span
$$\left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 2 \\ 0 \end{bmatrix} \right\}$$

f) Is
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 in Col A?
Solve $A\overrightarrow{X} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 3 & 1 & 1 \\ 2 & 1 & 5 & 4 & -1 \\ 1 & 2 & 4 & -1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 & 3 & -2 \\ 0 & 1 & 1 & -2 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
Page 4 of 6

Page 4 of 6

Page 4 of 6

Page 4 of 6

Contrast Between Nul A and Col A for an $m{m} imes m{n}$ Matrix A

Contrast Detween Nat A did Col A for dif 76 A 76 made A 7	
Nul A Aネェウ	Col A A文= 号
1 . Nul A is a subspace of \mathbb{R}^n .	1. Col A is a subspace of \mathbb{R}^m .
2. Nul A is implicitly defined; that is, you are given only a condition $(Ax = 0)$ that vectors in Nul A must satisfy.	2. Col A is explicitly defined; that is, you are told how to build vectors in Col A.
3. It takes time to find vectors in Nul A . Row operations on $\begin{bmatrix} A & 0 \end{bmatrix}$ are required.	It is easy to find vectors in Col A. The columns of A are displayed; others are formed from them.
4. There is no obvious relation between Nul A and the entries in A.	4. There is an obvious relation between Col A and the entries in A, since each column of A is in Col A.
5. A typical vector ${f v}$ in Nul A has the property $A{f v}={f 0}$.	5. A typical vector ${\bf v}$ in Col A has the property that the equation ${\bf A}{\bf x}={\bf v}$ is consistent.
6. Given a specific vector v , it is easy to tell if v is in Nul A. Just compute A v .	6. Given a specific vector \mathbf{v} , it may take time to tell if \mathbf{v} is in Col A . Row operations on $\begin{bmatrix} A & \mathbf{v} \end{bmatrix}$ are required.
7. Nul $A=\{0\}$ if and only if the equation $A\mathbf{x}=0$ has only the trivial solution.	7. Col $A = \mathbb{R}^m$ if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^m .
8. Nul $A = \{0\}$ if and only if the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.	8. Col $A = \mathbb{R}^m$ if and only if the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^m .

Definition

A **linear transformation** T from a vector space V into a vector space W is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W, such that

(i)
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
 for all \mathbf{u} , \mathbf{v} in V , and

(ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ for all \mathbf{u} in V and all scalers c.

The null space of a linear transformation is called the $\frac{\text{Kernel is a subspace of } W}{\text{Subspace of } W}$, such that $T(\mathbf{u}) = \mathbf{0}$.

The _____ of T is the set of all vectors in W of the form $T(\mathbf{x})$ for some $\mathbf{x} \in V$.

Ex 6:

(Calculus required) Let V be the vector space of all real-valued functions f defined on an interval [a,b] with the property that they are differentiable and their derivatives are continuous functions on [a,b]. Let W be the vector space $C\left[a,b
ight]$ of all continuous functions on $\left[a,b
ight]$, and let D:V o W be the transformation that changes f in V into its derivative f' . In calculus, two simple differentiation rules are

$$D(f+g) = D(f) + D(g)$$
 and $D(cf) = cD(f)$

That is, D is a linear transformation. It can be shown that the kernel of D is the set of constant functions on [a,b] and the range of D is the set W of all continuous functions on [a,b] .

Practice Problems

1. Let
$$W = \begin{cases} a \\ b \\ c \end{cases}$$
: $a - 3b - c = 0$ }. Show in two different ways that W is a subspace of \mathbb{R}^3 . (Use two theorems.)

Mathod 1: $A = A$ and is a subspace by Thm 2, which is a subspace by Thm 1: $A = A$ and $A = A$ and

= AX = V+W is consistent