2.3: Characteristics of Invertible Matrices
Math 220: Linear Algebra

Theorem 8 The Invertible Matrix Theorem
Let A be a square n x n matrix. Then the following statements are
equivalent. That is, for a given A, the statements are either all true or all false.
a. A is an invertible matrix.
b. A is row equivalent to the n X n identity matrix.
c. A has n pivot positions.
d. The 'equaticm Ax = 0 has only the trivial solution.
e. The columns of A form a linearly independent set.
f. The linear transformation X — Ax is one-to-one.
g. The equation Ax — b has at least one solution for each b in R”.
h. The columns of A span R".
i. The iinear transformation x +— Ax maps K™ onto R".
j. There is an n X n matrix C such that CA = 1.
k. There is an nn X n matrix D suchthat AD = 1.
. AT is an invertible matrix.
Theorem 5 from 2.2 could also make g. state ﬁ"') > 9‘ )wpi_ solution.
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2.3: Characteristics of Invertible Matrices

The Invertible Matrix Theorem essentially divides the set of all nX#n matrices into

two disjoint classes:
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Ex 1: Use the Invertible Matrix Theorem to determine if the following are invertible.
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2.3: Characteristics of Invertible Matrices

Be careful, the Invertible Matrix Theorem only applies to 5 0},0 a @2 matrices.
¢

- - . "( ) .‘A . - -
If A is invertible, we can also think about A AX =% in light of linear
transformations.

Multiplication

: by A
xe _®AX
TG ~ Muliplication
by A~
In general, a Linear Transformation 7:RY — R is |9 verh ble if

there exists a function S:RY — R" such that
S(T(%))=% forall ¥ RY
T(S(x))==% forall xe RY

. -
We call S the M VeOrs e of T and write it as T

Theorem 9

LetT:R® — RB" be a linear transformation and let A be the standard matrix
for T. Then T is invertible if and only if A is an invertible matrix. In that case,
the linear transformation S given by S (x) = A~1x is the unique function
satisfying eguations (1) and (2).

Ex 2: What can be said about a one-to-one linear transformation T:RN ->RN?
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2.3: Characteristics of Invertible Matrices
Practice Problems

-

2. Suppose that for a certain n x n matrix A, statement (g) of the invertible
Matrix Theorem is nof true. What can you say about equations of the form
Ax =b?

d :
2%5@. s Ax =90 o o solw.

3. Suppose that A and B are n X n matrices and the equation ABx =0
has a nontrivial soiution. What can you say about the matrix AB?

(ABY is  wor [npveshble.
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