Math 220: Linear Algebra

Theorem 8 The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.

- a. A is an invertible matrix.
- b. A is row equivalent to the $n \times n$ identity matrix.
- c. A has n pivot positions.
- d. The equation $A\mathbf{x}=\mathbf{0}$ has only the trivial solution.
- e. The columns of A form a linearly independent set.
- f. The linear transformation $\mathbf{x}\mapsto A\mathbf{x}$ is one-to-one.
- g. The equation $A\mathbf{x}=\mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
- h. The columns of A span \mathbb{R}^n .
- i. The linear transformation $\mathbf{x}\mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- j. There is an n imes n matrix C such that CA = I.
- k. There is an $n \times n$ matrix D such that AD = I.
- I. A^T is an invertible matrix.

Theorem 5 from 2.2 could also make g. state Ax = ち has solution.

If A and B are square matrices, and AB=I , then by j. and k. both A and B are invertible with $B=A^{-1}$ and $A=B^{-1}$.

Let square matrices
$$A \in B$$
 be given with $AB = I$.

 $\Rightarrow A$ is invertible (by k).

 $\Rightarrow A^{-1}AB = A^{-1}I \Rightarrow IB = A^{-1} \Rightarrow B = A^{-1}I$

And B is invertible (by I).

 $\Rightarrow ABB^{-1} = IB^{-1} \Rightarrow AI = B^{-1} \Rightarrow A = B^{-1}I$
 $Q \in B$.

Page 1 of 4

The Invertible Matrix Theorem essentially divides the set of all $n \times n$ matrices into two disjoint classes:

- cals of A span IR"

- L.T. 13 1-1

- N pivot positions
- columns of A are L.I,
- AX = 0 has only the triv, sol.
- LT is onto RN - Columns of RN - Columns of RN - Columns of RN - Columns of RN - AX = 0 has Now - Columns of RN - AX = 0 has Now - Columns of RN - AX = 0 has Now - Columns of RN - Columns of R Not invertible (A doesn't have on

- AX = 0 has NON-trivial solutions
- cols of A do not span R"
- AT is invertible

 AT is not invertible,

 AT is not invertible,

 AT is not invertible,

 AT is not invertible,

 AT is not invertible,

 a solution.
 - L.T. is NOT 1-1
- A is now equivalent to I. A is not now equivalent to I.

Ex 1: Use the Invertible Matrix Theorem to determine if the following are invertible.

$$A = \begin{bmatrix} 3 & 2 & 3 \\ 2 & 1 & 2 \\ 11 & -3 & 6 \end{bmatrix}$$

rref([A:I])

3 pivots so A is invertible.

$$A^{-1} = \frac{1}{76} \begin{bmatrix} -12 & 21 & -1\\ 20 & 3 & -11\\ 32 & -37 & 9 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & -3 & -2 \\ 5 & -1 & 18 \\ 4 & 2 & 20 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -3 & -2 & 1 & 0 & 0 \\ 5 & -1 & 18 & 0 & 1 & 0 \\ 4 & 2 & 20 & 0 & 0 & 1 \end{bmatrix}$$

$$R_2 - 5R_1 - 3R_2; R_3 - 4R_1 - R_3$$

2 pivots so A is NO+ invertible.

Be careful, the Invertible Matrix Theorem only applies to 39.2a matrices. If A is invertible, we can also think about $A^{-1}A$ X = X in light of linear transformations.

In general, a Linear Transformation $T: \mathbb{R}^N \to \mathbb{R}^N$ is ____invertible_____ if there exists a function $S: \mathbb{R}^N \to \mathbb{R}^N$ such that

$$S(T(\vec{x})) = \vec{x}$$
 for all $\vec{x} \in \mathbb{R}^N$
 $T(S(\vec{x})) = \vec{x}$ for all $\vec{x} \in \mathbb{R}^N$

We call S the ______ of T and write it as _______.

Theorem 9

Let $T:\mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the linear transformation S given by $S(\mathbf{x}) = A^{-1}\mathbf{x}$ is the unique function satisfying equations (1) and (2).

Ex 2: What can be said about a one-to-one linear transformation $T: \mathbb{R}^N \to \mathbb{R}^N$?

Practice Problems

2. Suppose that for a certain $n \times n$ matrix A, statement (g) of the Invertible Matrix Theorem is *not* true. What can you say about equations of the form $A\mathbf{x} = \mathbf{b}$?

3. Suppose that A and B are $n \times n$ matrices and the equation $AB\mathbf{x} = \mathbf{0}$ has a nontrivial solution. What can you say about the matrix AB?