2.1: Matrix Operations

Math 220: Linear Algebra

If A is an $m \times n$ matrix with m rows and n columns, then the entry in the ith row and jth column is denoted by $\frac{\Delta i}{L}$ and is called the $\frac{L}{L}$

The <u>diagonal</u> entries are $a_{11}, a_{22}, a_{33}, \ldots$ and they form the <u>Main</u> <u>diagonal</u>.

A <u>diagonal</u> matrix is a square matrix $(n \times n)$ whose non-diagonal entries are all <u>zero</u>. The <u>identity</u> matrix I_n is a diagonal matrix with 1/5 down the diagonal.

The ______ matrix has all zeros in all of its entries and is written just as 0.

Two matrices are <u>equal</u> if they are the same <u>size</u> and the corresponding <u>extrices</u> are <u>equal</u>.

The __sum__ of two matrices __A + 13 __ is the __sum__ of their corresponding __entries _. Thus, two matrices can only be __added ___ if their __size__ (man) is the same. Otherwise, the sum is not defined.

Ex 1: Given
$$A = \begin{bmatrix} 2 & -1 & 0 \\ -3 & 3 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ and $C = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$.

Find the following, if defined

a)
$$A+B = \begin{bmatrix} 2+1 & -1+2 & 0+3 \\ -3+4 & 3+5 & -2+6 \end{bmatrix}$$

= $\begin{bmatrix} 3 & 1 & 3 \\ 1 & 8 & 4 \end{bmatrix}$

b) B+C Not defined because the dimensions don't The Scalar Moltiple rA is the matrix whose entries are r times each entry of A.

The matrix A represents A and A and A is the same as A + (-1)B.

Ex 2: Given
$$A = \begin{bmatrix} 2 & -1 & 0 \\ -3 & 3 & -2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$. Find

a)
$$2A = \begin{bmatrix} 4 & -2 & 0 \\ -6 & 6 & -4 \end{bmatrix}$$

b) B-2A =
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 - $\begin{bmatrix} 4-2 & 0 \\ -6 & 6 & -4 \end{bmatrix}$
= $\begin{bmatrix} -3 & 4 & 3 \\ 10 & -1 & 10 \end{bmatrix}$

Theorem 1

Let A, B, and C be matrices of the same size, and let r and s be scalars.

$$a. A + B = B + A$$

$$\operatorname{d.} r(A+B) = rA + rB$$

b.
$$(A+B)+C=A+(B+C)$$

$$e. (r+s)A = rA + sA$$

c.
$$A + 0 = A$$

f.
$$r(sA) = (rs)A$$

Matrix Multiplication

Definition

If A is an $m \times n$ matrix, and if B is an $n \times p$ matrix with columns $\mathbf{b}_1, \dots, \mathbf{b}_p$, then the product AB is the $m \times p$ matrix whose columns are $A\mathbf{b}_1, \dots, A\mathbf{b}_p$. That is,

$$AB = A[\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_p] = [A\mathbf{b}_1 \ A\mathbf{b}_2 \ \cdots \ A\mathbf{b}_p]$$

Ex 3: Given $A = \begin{bmatrix} 2 & -1 & 0 \\ -3 & 3 & -2 \end{bmatrix}$ and $C = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$, compute CA.

$$C\mathbf{a}_1 = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \quad C\mathbf{a}_2 = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix} \quad C\mathbf{a}_3 = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -2 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

Ex 4: Given
$$A = \begin{bmatrix} 2 & -1 & 0 \\ -3 & 3 & -2 \end{bmatrix}$$
 and $C = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$, is the matrix AC defined?

Row-Column Rule for Computing AB

If the product AB is defined, then the entry in row i and column j of AB is the sum of the products of corresponding entries from row i of A and column j of B. If $(AB)_{ij}$ denotes the (i,j) -entry in AB, and if A is an $m \times n$ matrix, then

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}$$

$$AB_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}$$

$$AB_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}$$

$$AB_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}$$

Ex 5: Find the entries of the 3rd row of AB, where
$$A = \begin{bmatrix} 2 & -5 & 0 \\ -1 & 3 & -4 \\ 6 & -8 & -7 \\ -3 & 0 & 9 \end{bmatrix}, B = \begin{bmatrix} 4 & -6 \\ 7 & 1 \\ 3 & 2 \end{bmatrix}$$

$$A_{41 \times 3} B_{3 \times 2} = \begin{bmatrix} -58 \\ 53 \end{bmatrix} = \begin{bmatrix} -58 \\ 6 & 4 \end{bmatrix} + \begin{bmatrix} -2 \\ -7 \\ 3 \end{bmatrix}$$

$$A_{53} = \begin{bmatrix} -58 \\ 6 & 4 \end{bmatrix} + \begin{bmatrix} -2 \\ -7 \\ 3 \end{bmatrix} = \begin{bmatrix} -58 \\ 6 & 4 \end{bmatrix} + \begin{bmatrix} -7 \\ -7 \\ 3 \end{bmatrix}$$

 $\begin{bmatrix} 6 & -8 & -7 \end{bmatrix} \begin{bmatrix} 4 & -6 \\ 7 & 1 \\ 2 & 2 \end{bmatrix}$ We could have just ignored the rest of \boldsymbol{A} and computed $row_i(AB) = row_i(A) \cdot B$

Theorem 2

Let A be an m imes n matrix, and let B and C have sizes for which the indicated sums and products are defined.

a.
$$A(BC) = (AB)C$$
 (associative law of multiplication)

b.
$$A(B+C) = AB + AC$$
 (left distributive law)

c.
$$(B+C)A = BA + CA$$
 (right distributive law)

$$r(AB) = (rA)B = A(rB)$$
for any scalar r

e.
$$I_m A = A = AI_n$$
 (identity for matrix multiplication)

While the following properties are all true, be careful, the ______ mmvtative_____ property is not true, that is, AB ______ BA.

Ex 6: Let $A = \begin{bmatrix} -2 & 1 \\ 4 & -3 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -2 \\ 3 & 5 \end{bmatrix}$. Show that these two matrices do not commute. That is, verify that $AB \neq BA$.

$$AB = \begin{bmatrix} -2 & 1 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 1 & q \\ -5 & -23 \end{bmatrix}$$

$$BA = \begin{bmatrix} 1 & -2 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 4 & -3 \end{bmatrix} = \begin{bmatrix} -10 & 7 \\ 14 & -12 \end{bmatrix}$$

Warnings:

- 1. In general, AB
 eq BA.
- 2. The cancellation laws do *not* hold for matrix multiplication. That is, if AB=AC, then it is *not* true in general that B=C. (See Exercise 10.)
- 3. If a product AB is the zero matrix, you cannot conclude in general that either A=0 or B=0. (See Exercise 12.)

$$\textbf{10. Let } A = \begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix}, B = \begin{bmatrix} 8 & 4 \\ 5 & 5 \end{bmatrix}, \ \ \text{and } C = \begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix}.$$

Verify that AB = AC and yet $B \neq C$.

$$AB = \begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix} \begin{bmatrix} 8 & 4 \\ 5 & 5 \end{bmatrix} = \begin{bmatrix} 1 & -7 \\ -2 & 14 \end{bmatrix}$$

$$Pot equal$$

$$AC = \begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix} \begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -7 \\ -2 & 14 \end{bmatrix}$$

$$eq. all$$

12. Let $A = \begin{bmatrix} 3 & -6 \\ -1 & 2 \end{bmatrix}$. Construct a 2×2 matrix B such that AB is the zero matrix. Use two different nonzero columns for B.

$$\begin{bmatrix} 3 & -6 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Given an $m \times n$ matrix A, then the $\frac{1}{1}$ whose $\frac{1}{1}$ whose $\frac{1}{1}$ are formed by the corresponding $\frac{1}{1}$ of A.

Ex 7: Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 3 \\ 5 & 7 \\ 2 & 4 \end{bmatrix}$, and $C = \begin{bmatrix} 2 & 1 & 0 \\ -3 & -4 & -5 \end{bmatrix}$. Find

$$A^{T} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \qquad B^{T} = \begin{bmatrix} 1 & 5 & 2 & 2 \\ 3 & 2 & 4 \end{bmatrix} \qquad C^{T} = \begin{bmatrix} 2 & -3 \\ 4 & 3 \end{bmatrix}$$

Theorem 3

Let A and B denote matrices whose sizes are appropriate for the following sums and products.

a.
$$\left(A^T\right)^T=A$$

b.
$$(A+B)^T = A^T + B^T$$

c. For any scalar
$$r$$
, $(rA)^T = rA^T$

$$d.(AB)^T = B^TA^T$$
 This will be important in the will be important in

Practice Problems

1. Since vectors in \mathbb{R}^n may be regarded as $n \times 1$ matrices, the properties of transposes in Theorem 3 apply to vectors, too. Let

$$A = egin{bmatrix} 1 & -3 \ -2 & 4 \end{bmatrix}$$
 and $\mathbf{x} = egin{bmatrix} 5 \ 3 \end{bmatrix}$

Compute $(A\mathbf{x})^T, \mathbf{x}^T A^T, \mathbf{x} \mathbf{x}^T, \mathbf{and} \mathbf{x}^T \mathbf{x}$. Is $A^T \mathbf{x}^T$ defined?

$$(A \overrightarrow{x})^{T} = (\begin{bmatrix} -4 \\ 2 \end{bmatrix})^{T} = \begin{bmatrix} -4 \\ 2 \end{bmatrix}$$
some
$$\overrightarrow{x}^{T} A^{T} = \begin{bmatrix} 5 \\ 3 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \end{bmatrix} = \begin{bmatrix} -4 \\ 2 \end{bmatrix}$$

$$\overrightarrow{x}^{T} \overrightarrow{x} = \begin{bmatrix} 5 \\ 3 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \end{bmatrix} = \begin{bmatrix} 34 \end{bmatrix}$$

$$\overrightarrow{x}^{T} = \begin{bmatrix} 5 \\ 3 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \end{bmatrix} = \begin{bmatrix} 25 \\ 15 \end{bmatrix} \begin{bmatrix} 25 \\ 25 \end{bmatrix}$$

A T T X 1 x 2 mis marched dimensions and so undefined.

2. Let A be a 4×4 matrix and let \mathbf{x} be a vector in \mathbb{R}^4 . What is the fastest way to compute $A^2\mathbf{x}$? Count the multiplications.

(A. A): 16 entries, 4 multi each = 64

AZZ: 4 entries, 4 mult each = 16

There are a total of : 80

A (AX)

There are a total of 32 multiplications.

3. Suppose A is an $m \times n$, matrix, all of whose rows are identical. Suppose B is an $n \times p$ matrix, all of whose columns are identical. What can be said about the entries in AB?

AB is an mxp matrix all of whose entries are identical.