2.1: Matrix Operations
Math 220: Linear Algebra

If A is an mX#n matrix with m rows and n columns, then the entry in the ith row and
jth column is denoted by _&{; and is called the _ (L L‘;,‘_B —erin
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A d;‘ac}ppai Matrix is a square matrix (#X7n ) whose non-diagonal
entries are all ___ze+© . The ___ i Jew Hh(j matrix /,, is a
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diagonal matrix with jL 5 down the diagonal.
The _ 2-exyo matrix has all zeros in all of its entries and is written just as 0.
Two matrices are é@ua\ if they are the same _si=€. and the

corresponding e~ s~ are e.c’;,uql

The _$+¥™ of two matrices A+ 13 isthe s wum of their
corresponding _&r+11¢5 . Thus, two matrices can only be added if their
s122. ( m=s )isthesame. Otherwise, the sum is not defined.
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Ex 1: Given A—{_3 3 _2},3—{4 5 6J and C_[Z J.
Find the following, if defined.
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The Scalar it gla r A isthe matrix
whose entries are _ " times each entry of A.

The matrix_— A represents(- 1 A and A - & isthesameas A+CDEG

2 -1 0 1123 .
3 3 _2} and B—L 5 61' Find

a) 24 = 4 -2 o b) B-2A = Pz 3 B 4 -2 o
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Theorem 1

Let A, B, and C be matrices of the same size, and let r and s be scalars.
a A+B=B+A dr(A+B)=rA+rB
b.(A+B)+C=A4+(B+0) e.(r+s)A=rd+s4
C40=4 f r(sd) = (rs) A

Matrix Multiplication

Definition
If Ais anm x n matrix, and if Bis an n X p matrix with columns ba,...,bp, thenthe

product AB is the m x p matrix whose columns are Aby,...,Aby. Thatis,

AB:A[bl b2 v bp]:[Abl Ab2 - Abp]
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Ex 3: Given A_{—3 3 _2} and C= -
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, compute CA.
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Ex 4: Given Az{_s 3 o

} and C=B ﬂ, is the matrix AC defined?
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Row-Column Rule for Computing AB
If the product AB is defined, then the entry in row i and column j of AB is the sum of the

products of corresponding entries from row i of A and column j of 8. If (AB),; denotes
the (2,7) -eniry in AB, and if Ais anm X n matrix, then Lo « u colymy
(5 09) * <b"¢ >
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Ex 5: Find the entries of the 3" row of AB, where 9 _5 0
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We could have just ignored the rest of A and computed [6 8 -7]|7 1
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row; (AB) =row; (A4)-B

Theorem 2
Let A be an m x n matrix, and let B and C have sizes for which the indicated sums and
products are defined.

a. A(BC) = (AB)C (associative law of multiplication)
b A(B+ C)=AB+ AC (left distributive law)
c.(B+C)A=BA+CA (right distributive law)
q r(AB) = (rA)B= A(rB)

for any scalar »

e InA=A=AlL (identity for matrix multiplication)



While the following properties are all true, be careful, the _ &2 M mvtuhve
property is not true, that is, AB i BA.
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commute. That is, verify that AB # BA.

B -2 R - T |
At = [““ - 1{3 5';\ [_5 ._7_71
PA = [‘ 'Z]Ez . [?w 7

3 s 4 =3 - 'L/ -1z

Warnings:

1. In general, AB # BA.

2. The cancellation laws do not hold for matrix multiplication. That is, if
AB = AC, thenitis nottrue in general that B = C. (See Exercise 10.)

Ex6: Let A={ }and B=

—2
. Show that these two matrices do not
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3. If a product AB is the zero matrix, you cannot conclude in general that
either A = 0 or B = (. (See Exercise 12.)
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Verify that AB = AC andyet B £ C.
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12. let A = [ i 2]. Construct a 2 x 2 matrix B such that AB is the zero matrix.

Use two different nonzero columns for B.
3 -6 ||z < & o

If A is an X7 matrix and if k is a positive integer, then A= A - A. A- .. 4

-
K times
Given an mXn matrix A, then the tranvs pose of Ais the nXm
matrix, denoted by A‘r whose celvmps are formed by the
corresponding _ re w5  of A.
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Ex7: Let A= , B= cand C= . Find
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Theorem 3
Let A and B denote matrices whose sizes are appropriate for the following sums and products.
T
a (AT =4 c. For any scalar r, ('rA)T —=rAT
b. (A+ B)T — AT + BT d. (AB)T — BTAT & This ’Wt | b¢:
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Practice Problems
1. Since vectors in B® may be regarded as n x 1 matrices, the properties of
transposes in Theorem 3 apply to vectors, too. Let
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Compute (‘AX)T,xTAT,xxT and xTx. 1s ATxT defined?

ey =[]y = [ 3
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2.letAbea4 x 4 matrix and let x be a vector in R%. What is the fastest way to
compute A%x? Count the multiplications.
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3. Suppose Ais an m X n matrix, all of whose rows are identical. Suppose B is an
n x p matrix, all of whose columns are identical. What can be said about the entries

in AB?
AR is aw rmxp e ql) of whosa

erkpes are dewteq),



