Math 220: Linear Algebra

Definition

An indexed set of vectors $\{\mathbf v_1,\dots,\mathbf v_p\}$ in $\mathbb R^n$ is said to be linearly independent if the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution. The set $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ is said to be linearly dependent if there exist weights c_1,\ldots,c_p , not all zero, such that

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0}$$

Ex 1: Determine whether the set $\{\mathbf v_1, \mathbf v_2, \mathbf v_3\}$ is linearly independent. If not, find a linear dependence relation among $\mathbf v_1, \mathbf v_2$, and $\mathbf v_3$.

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, \text{ and } \mathbf{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

$$X_1 = 2X_3$$

 $X_2 = -X_3$ $\Rightarrow \overline{X} = X_3 \begin{bmatrix} 2 \\ -1 \end{bmatrix}$
 $X_3 = X_3 \text{ (free)}$

So, for example, if $X_3 = 1$ this tells us $2\vec{v}_1 - \vec{v}_2 + \vec{v}_3 = \vec{o}$. This is a Non-trivial solution to the homogeneous equation so $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ are linearly dependent.

Page 1 of 6

The columns of a matrix A are linearly independent if and only if the equation Ax = 0 has only the trivial solution.

Ex 2: Determine whether the columns of the matrix A =linearly independent.

$$\{\mathbf v\}$$
 , not the zero vector

$$\{\mathbf{0}\}$$

$$\left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} -3 \\ 6 \end{bmatrix} \right\}$$

L.D.
$$\begin{bmatrix} 1 & -3 & 0 \\ -2 & 6 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

that is $3\begin{bmatrix} 1 \\ -2 \end{bmatrix} + 1\begin{bmatrix} -3 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$\left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} -3 \\ 5 \end{bmatrix} \right\}$$

L.I.
$$\begin{bmatrix} 1 & -3 & 0 \\ -2 & 5 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

only the trivial solution.

A set of two vectors $\{v_1, v_2\}$ is linearly dependent if at least one of the vectors is a multiple of the other. The set is linearly independent if and only if neither of the vectors is a multiple of the other.

Theorem 7 Characterization of Linearly Dependent Sets

combination of the others

 $ag{v_1,\ldots,v_p}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent and $\mathbf{v}_1 \neq \mathbf{0}$, then some \mathbf{v}_i (with j > 1) is a linear combination of the preceding vectors, $\mathbf{v}_1, \dots, \mathbf{v}_{j-1}$.

Proof:

Proof:

(=) Assume S is linearly dependent.

If
$$\vec{V}_1 = \vec{0}$$
 than it is a linear combination of the other vectors: $0\vec{V}_2 + \dots + 0\vec{V}_p = \vec{V}_1$.

If $\vec{V}_1 \neq \vec{0}$ than $C_1\vec{V}_1 + \dots + C_{j-1}\vec{V}_{j-1} + C_j\vec{V}_j + C_{j+1}\vec{V}_{j+1} + \dots + C_p\vec{V}_p\vec{z}\vec{C}$ where not all of $C_{1,1,\dots,1}C_p$ are zero. Suppose $C_j \neq 0$ and $C_{j+1} = \dots = C_p = 0$.

$$\vec{V}_1 = -C_1\vec{V}_1 + \dots + C_j\vec{V}_j + Q\vec{V}_{j+1} + \dots + Q\vec{V}_p = \vec{0}$$

$$\vec{V}_j = -C_1\vec{V}_1 - \dots - C_{j-1}\vec{V}_{j-1}$$
So a vector is a linear combination of the others.

(=) Suppose one vector, call it \vec{V}_j is a linear combination of the others.

(=) Suppose one vector, call it \vec{V}_j is a linear combination of the others.

$$\vec{V}_j = -C_1\vec{V}_1 + \dots + C_j\vec{V}_j + Q\vec{V}_{j+1} + \dots + Q\vec{V}_{j+1}\vec{V}_{j+1} + \dots + C_j\vec{V}_{j-1}\vec{V}_{j+1}$$

$$\vec{V}_j = C_1\vec{V}_1 + \dots + C_j\vec{V}_{j+1}\vec{V}_{j+1}\vec{V}_{j+1} + \dots + C_j\vec{V}_{j+1}\vec{$$

claim:

Ex 4: Given the set of vectors $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\} \in \mathbb{R}^3$ with \mathbf{u} and \mathbf{v} linearly independent, explain why vector \mathbf{w} is in the plane spanned by \mathbf{u} and \mathbf{v} if and only if $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent.

Suppose $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$ which is a war-trivial solvtion to the homogeneous equation and thus $\{u, v, w\}$ is linearly dependent. Q, E, D.

Theorem 8

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ in \mathbb{R}^n is linearly dependent if p>n.

Proof:

Let $\vec{\nabla}_1, ..., \vec{\nabla}_p \in \mathbb{R}^n$ w/p>n be given.

The main point

is that too many

rows $\vec{\nabla}_1, ..., \vec{\nabla}_p$ \sim $\vec{\nabla}_1 \cdot ..., \vec{\nabla}_p$ vectors granantees

more 1868 columns

=> free variables

= Ax = 0 has NON-trivial solutions :. VI, TP are L.D.

Ex 5: Using Theorem 8, create a set of vectors in \mathbb{R}^3 that is linearly dependent, and don't automatically make some of the vectors obvious multiples or combinations of the others.

Theorem 9

If a set $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n contains the zero vector, then the set is linearly dependent.

Proof:

Let
$$\{V_1, ..., V_p\}$$
 in \mathbb{R} contain \widehat{O} .

WLOG assume $\widehat{V}_1 = \widehat{O}$
 $\Rightarrow 1\widehat{V}_1 + 0\widehat{V}_2 + ... + 0\widehat{V}_p = \widehat{O}$
 $\Rightarrow \text{ there is a Non-trivial solution to the homogeneous equation.}$

i. the vectors are L.D.

Ex 6: Determine by inspection if the give set is linearly dependent.

a.
$$\begin{bmatrix} 1\\7\\6 \end{bmatrix}$$
, $\begin{bmatrix} 2\\0\\9 \end{bmatrix}$, $\begin{bmatrix} 3\\1\\5 \end{bmatrix}$, $\begin{bmatrix} 4\\1\\8 \end{bmatrix}$ L.D. (too many vecs)

b. $\begin{bmatrix} 2\\3\\5 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 1\\1\\8 \end{bmatrix}$ L.D. (includes \overrightarrow{O})

c. $\begin{bmatrix} -2\\4\\6\\10 \end{bmatrix}$, $\begin{bmatrix} 3\\-6\\-9\\15 \end{bmatrix}$ L.T. (Not scalar multiples)

Ex 7: Network flow exercise from 1.6 (we did a chemistry example previously).

- a) Find the general traffic pattern in the freeway network shown in the figure. (Flow rates are in cars/minute)
- b) Describe the general traffic pattern when the road whose flow is x_4 is closed.
- c) When $x_4 = 0$, what is the minimum value of x_1 ?

$$A = -x_1 + x_3 + x_4 + 40 = 0$$

(a)
$$X_1 = 100 + X_3 - X_5$$

 $X_2 = 100 - X_3 + X_5$
 $X_3 = X_3 \text{ (free)}$
 $X_4 = 60 - X_5$
 $X_5 = X_5 \text{ (free)}$

(b) If
$$x_4 = 0$$

 $x_1 = 40 + x_3$
 $x_2 = 160 - x_3$
 $x_3 = x_3$ (free)
 $x_4 = 0$
 $x_5 = 60$
(c) Since $x_3 > 0$
the minimum