1.7: Linear Independence
Math 220: Linear Algebra

Definition

An indexed set of vectors {vy,...,vp} InR® is said to be linearly
independent if the vector equation

T1V1+2aVy + -+ Xpvy =0

-_7><,' = Xz':_,__-:.)(
has only the|trivial sclution. The set {vl, . ,vp} is said to be linearly

dependent if there exist weights ¢, . .., ¢,, notall zero, such that

CivVi+eVae+- -+ vy =0

Ex 1: Determine whether the set {VI’VZ’VS} is linearly independent. If not, find a

linear dependence relation among ViV, and Vs.
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1.7: Linear Independence This 9

o bi

The columns of a matrix A are linearly independent if and only if the ¢kea'.
equation Ax = 0 has only the trivial solution.
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Ex 2: Determine whether the columns of the matrix A=/ 2 1 —=1| are
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Ex 3: What about? Linearly Dependent or Independent? Why?
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1.7: Linear Independence

A set of two vectors {v1,va} is linearly dependent if at least one of
the vectors is a multiple of the other. The set is linearly independent if
and only if neither of the vectors is a multiple of the other.

Theorem 7 Characterization of Linearly Dependent Sets
claime Anindexed set S = {vy,... ,vp} of two or more vectors is linearly
—— dependent if and only if at least one of the vectors in Sis a linear
combination of the others. In fact, if S is linearly dependent and
vy # 0, thensome v; (with j > 1 )is a linear combination of the

preceding vectors, vy,...,v;_;.

Proof:
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1.7: Linear Independence
clarm .
Ex 4: Given the set of vectors {u,V,W}E R3 with W and Vv linearly independent,

explain why vector W is in the plane spanned by W and V if and only if {u, v, W} is

linearly dependent.
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Theorem 8
If a set contains more vectors than there are entries in each vector, then the setis

linearly dependent. That is, any set {v1,...,vp} inR™ is linearly dependentif p > n.

Proof:
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Ex 5: Using Theorem 8, create a set of vectors in R3 thatis linearly dependent, and
don’t automatically make some of the vectors obvious multiples or combinations of

the others.
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1.7: Linear Independence

Theorem 8 |
IfasetS= {vﬁ, . .,vp} in E™ contains the zero vector, then the set is linearly dependent.
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Ex 6: Determine by inspection if the give set is linearly dependent.
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1.7: Linear Independence

Ex 7: Network flow exercise from 1.6 (we did a chemistry example previously).

a) Find the general traffic pattern in the freeway network shown in the figure.
(Flow rates are in cars/minute)

b) Describe the general traffic pattern when the road whose flow is x,, is closed.

¢) When x, = 0, what is the minimum value of x? -
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