Math 220: Linear Algebra

Definition

If A is an $m \times n$ matrix, with columns $\mathbf{a}_1, \dots, \mathbf{a}_n$, and if x is in \mathbb{R}^n , then the product of A and x, denoted by $A\mathbf{x}$, is the linear combination of the columns of A using the corresponding entries in x as weights; that is,

$$A\mathbf{x} = \begin{bmatrix} \mathbf{a_1} & \mathbf{a_2} & \cdots & \mathbf{a_n} \end{bmatrix} \begin{bmatrix} \mathbf{x_1} \\ \vdots \\ \mathbf{x_n} \end{bmatrix} = \mathbf{x_1}\mathbf{a_1} + \mathbf{x_2}\mathbf{a_2} + \cdots + \mathbf{x_n}\mathbf{a_n}$$

Ax is only defined if the number of Ax is only defined if the number of

Ex 1: (A is 2x3)

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = -1 \begin{bmatrix} 1 \\ 4 \end{bmatrix} + 0 \begin{bmatrix} 2 \\ 5 \end{bmatrix} + 2 \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

$$\uparrow \qquad \uparrow \qquad = \begin{bmatrix} -1 \\ -4 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 6 \\ 12 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 5 \\ 8 \end{bmatrix}$$

$$(A \text{ is } 3x2)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

Ex 2: For $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \in \mathbb{R}^3$ Write the linear combination of $5\mathbf{u}_1 - \mathbf{u}_2 + 2\mathbf{u}_3$ as a matrix times a vector.

Strix times a vector.

$$5\vec{u}_1 - |\vec{u}_2 + 2\vec{u}_3| = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \vec{u}_3 \\ \vec{u}_1 & \vec{u}_2 & \vec{u}_3 \end{bmatrix} \begin{bmatrix} 5 \\ -1 \\ 2 \end{bmatrix}$$

A

 \uparrow

Ex 3: Write the system of equations $3x_1 - x_2 - 4x_3 = 3$ $x_1 - 5x_2 = -2$

a) Vector Equation

$$X_1 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + X_2 \begin{bmatrix} -1 \\ 0 \end{bmatrix} + X_3 \begin{bmatrix} -4 \\ -5 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

b) Matrix Equation

$$\begin{bmatrix} 3 & -1 & -4 \\ 1 & 0 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

property (6) on the Next page.

Theorem 3

If A is an m imes n matrix, with columns $\mathbf{a_1}, \dots, \mathbf{a_n}$, and if \mathbf{b} is in \mathbb{R}^m , the matrix equation

$$A\mathbf{x} = \mathbf{b} \tag{4}$$

has the same solution set as the vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{b} \tag{5}$$

which, in turn, has the same solution set as the system of linear equations whose augmented matrix is

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ \mathbf{b}] \tag{6}$$

of the columns of A.

Ex 4: Let $A = \begin{bmatrix} 1 & -3 & -4 \\ -3 & 2 & 6 \\ 5 & -1 & -8 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$. Is the equation $A\mathbf{x} = \mathbf{b}$ consistent for all possible b_1, b_2, b_3 ?

$$\begin{bmatrix} i & -3 & -4 & b_1 \\ -3 & 2 & 6 & b_2 \\ 5 & -1 & -8 & b_3 \end{bmatrix} R_2 + 3R_1 \rightarrow R_2$$

$$\begin{bmatrix} 1 & -3 & -4 & b_1 \\ 0 & -7 & -6 & b_2 + 3b_1 \\ 0 & 14 & 12 & b_3 - 5b_1 \end{bmatrix} R_3 + 2R_2 \Rightarrow R_3$$

$$\begin{bmatrix} \Box & -3 & -4 & b_1 \\ O & \Box & -6 & b_2 + 3b_1 \\ O & D & b_3 + 2b_2 + b_1 \end{bmatrix} \leftarrow \text{ the system will be in consistent if}$$
in consistent if

when $b_3 + 2b_2 + b_1 = 0$.

Theorem 4

Let A be an $m{m} imes m{n}$ matrix. Then the following statements are logically equivalent. they are all true statements or they are all false.

- H = "for all" I = " there exists" a. For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- b. Each b in \mathbb{R}^m is a linear combination of the columns of A.
- c. The columns of A span \mathbb{R}^m . $\leftarrow \forall \forall \in \mathbb{R}^m$ there exist scalars $c_1, \ldots c_N$ d. A has a pivot position in every row.

 Picture: $\begin{bmatrix} a_1 & a_2 & \cdots & a_N \\ a_1 & a_2 & \cdots & a_N \end{bmatrix}$ $M \in \mathbb{N}$

(Warning: A is a coefficient matrix here, not an augmented matrix.)

Ex 5: Compute
$$A$$
x=**b** for $A = \begin{bmatrix} 1 & 4 & -1 \\ 2 & 0 & -3 \\ -3 & -2 & 5 \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$.

$$A \vec{x} = \begin{bmatrix} 1 & 4 & -1 \\ 2 & 0 & -3 \\ -3 & -2 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix} + x_2 \begin{bmatrix} 4 \\ 0 \\ -2 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ -3 \\ 5 \end{bmatrix}$$

$$= \begin{bmatrix} x_1 + 4x_2 - x_3 \\ 2x_2 - 3x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \vec{b}$$

$$= \begin{bmatrix} x_1 + 4x_2 - x_3 \\ 2x_2 - 3x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \vec{b}$$

Row-Vector Rule for Computing Ax $\frac{1-3}{3} \times \frac{2}{3} = \frac{2}{3} = \frac{2}{3} \times \frac{2}{3} = \frac{2}{3} =$

If the product $A\mathbf{x}$ is defined, then the i th entry in $A\mathbf{x}$ is the sum of the products of corresponding entries from row i of A and from the vector x.

Ex 6: Compute

a)
$$\begin{bmatrix} 1 & -2 & 3 \\ 0 & 4 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix} = \begin{bmatrix} (1) + (2) + (3) \\ (2) + (3) \\ (3) \end{bmatrix} = \begin{bmatrix} 12 \\ 3 \end{bmatrix}$$

b)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \\ c \\ c \end{bmatrix} + \begin{bmatrix} a \\ b \\ c \\ c \\ c \end{bmatrix} + \begin{bmatrix} a \\ b \\ c \\ c \\ c \\ c \end{bmatrix} + \begin{bmatrix} a \\ b \\ c \\ c \\ c \\ c \end{bmatrix}$$

If I_n represents $n \times n$ identity matrix, then $I_n \times \mathbf{x} = \mathbf{x}$ for every $\mathbf{x} \in \mathbb{R}^n$

Theorem 5

If A is an $m \times n$ matrix, u and v are vectors in \mathbb{R}^n , and c is a scalar, then:

$$a. A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v};$$

b.
$$A(c\mathbf{u}) = c(A\mathbf{u})$$
.

b.
$$A(\mathbf{cu}) = \mathbf{c}(\mathbf{Au})$$
.

 $claim$: If $A_{m\times n}$, $n \in \mathbb{R}^n$, and c a scalar then $A(c\vec{n}) = c(A\vec{n})$

proof.

Let $A_{m\times n} = \begin{bmatrix} \vec{a}_1 & - \vec{a}_1 \\ \vec{a}_1 & - \vec{a}_1 \end{bmatrix}$, $\vec{n} = \begin{bmatrix} n_1 \\ i \\ n_n \end{bmatrix}$, and scalar

 c be given.

 $A(c\vec{n}) = \begin{bmatrix} \vec{a}_1 & - \vec{a}_1 \\ \vec{a}_1 & - \vec{a}_n \end{bmatrix} \begin{bmatrix} cn_1 \\ i \\ n_n \end{bmatrix}$
 $= \begin{bmatrix} \vec{a}_1 & - \vec{a}_1 \\ \vec{a}_1 & - \vec{a}_n \end{bmatrix} \begin{bmatrix} cn_1 \\ i \\ cn_n \end{bmatrix}$
 $= c(n_1 \vec{a}_1 + ... + cn_n \vec{a}_n)$
 $= c(n_1 \vec{a}_1 + ... + n_n \vec{a}_n)$

$$A(c\overline{u}) = c(A\overline{u})$$
. Page 5 of 5