5.4-6: Eigenvalues and Dynamical Systems
Math 220: Linear Algebra
		
	5.4-6: Eigenvalues and Dynamical Systems

Real Eigenvalues




A stretch of desert in Northwestern Mexico is populated mainly by two species of animals: coyotes and roadrunners.  We wish to model the populations  and  of coyotes and roadrunners t years from now if the current populations  and  are known.
From this habitat, the following equations model the transformation of this system from one year to the next, from time t to time t+1.:


a.) 
Write this as a matrix product 





We call  the ______________________ and  the ______________________
This linear transformation is an example of a ________________________________
b.) 
Suppose we begin with 100 coyotes and 300 road runners, find a close-form formula for .






c.) 


Suppose we have  and , find 




d.) 


Suppose we have , find .  Hint: Write  in terms of the eigenbasis.










e.) Sketch a phase portrait to describe this system





Here is another example.  

Consider .  Since the sum of each column is 1, this linear transformation matrix is called a ____________________________.  
a.) 
Find a closed-form expression for .  Hint: Since A is a transition matrix, one of its eigenvalues will be one.















b.) 

If , find 





c.) 
Find the steady-state or equilibrium vector 


Complex Eigenvalues


Up to this point, we have only discussed real eigenvalues and real-valued vectors (including eigenvectors).  But the linear algebra world we have established works over complex numbers of the form  where .




Find the eigenvalues and a basis for each eigenspace in  of the matrix .  Then write the eigenvectors  in the form 















Notice that a real-valued matrix can have complex eigenvalues and eigenvectors.  Notice further that the eigenvalues and vectors come in conjugate pairs.

Next we need to unpack the rotation-scaling matrix .
a.) Find the eigenvalues of C.




b.) 



Let’s call .  Then using the picture below, find  and  in terms of .
[image: ]


So 

where                           is a scaling matrix and                              is a rotation matrix.


The matrix  is a rotation-scaling matrix.  Find its eigenvalues, scaling factor, and the angle of rotation .



This brings us back to the idea of matrix factorization.  Recall that if A had real eigenvalues and enough linearly independent eigenvectors, then  where the columns of P were the eigenvectors and D was a diagonal matrix whose diagonal entries were the corresponding eigenvalues.







Similarly, let A be a real matrix with a complex eigenvalue  and an associated eigenvector  in .  Then  where  and C is the rotation-scaling matrix .



Find an invertible matrix P and a matrix C of the form  such that the matrix  has the form 


Trajectories of Dynamical Systems
When we began this lesson, we used a predator-prey example involving coyotes and road runners.  We ended that example with a phase portrait that helped us understand the trajectories based upon various initial state vectors.
Let’s begin by trying to understand how these trajectories work.



[bookmark: ZEqnNum124523]Suppose  and , find and plot 







(revisited)  and has eigenvalues  and  with corresponding eigenvectors and .  


So if , then 
[image: ]



Suppose .  What are the eigenvalues and eigenvectors?

[image: ]

Suppose .    Here is a phase portrait for it.
[image: ]
Question: In the previous examples, we have focused on diagonal matrices?  Is this reasonable?  Is it overly simplistic?  Explain.






Show that the origin is a saddle point for the solutions of  where .    



Phase portraits get more interesting with complex eigenvalues
[image: ]



Consider the dynamical system and sketch the trajectory of   where  and  .
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FIGURE 1 The origin as an attractor.
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FIGURE 2 The origin as a repeller.
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FIGURE 3 The origin as a saddle point.
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