3.1 & 3.2: Determinants
Math 220: Linear Algebra
		
3.1 & 3.2: Determinants

Although out of fashion, determinants played a large role in the early development of linear algebra.  Four uses of determinants include the following:  Determinants help us “determine” if a system of linear equations has a unique solution.  They are a mechanism to “determine” whether the inverse of a matrix exists (this would have come later).  They may be geometrically interpreted as the scaling factor of a linear transformation.  And the determinant is also a calculating mechanism used elsewhere in math to find things such as the cross-product (Calculus III), Jacobian (Calculus IV), and the Wronskian (Differential Equations).
As to why they have fallen out of favor?  Well they are computationally expensive even with modern technology.  So we have adopted other ways to accomplish their original purpose.
Their primary reason for being in this course is that they are needed for our development of the eigenvalue and eigenvector in a subsequent chapter.



If  find  which is also notated  





 Calculate  by expanding across the second column.  




 Compute the determinant: 
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 Compute the determinant: 





Theorem 3: Row Operations
Let A be a square matrix
a. 
If a multiple of one row of A (old) is added to another row to produce a matrix B (new), then .
b. 
If two rows of A (old) are interchanged to produce B (new), then .
c. 
If one row of A (old) is multiplied by k to produce B (new), then  
Find the determinant by first row-reducing to echelon form.

 








[bookmark: ZEqnNum147581]Find the determinant by first row-reducing to echelon form.
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Let’s consider two different triangular matrices and their invertibility.  The focus on triangular matrices is reasonable as we learned in a previous section that row operations do not impact the invertibility of matrices.
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Revisiting (), at what point could we have stopped?
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Verify Thm 6 for 
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Theorem 2
If Ais a triangular matrix, then det A is the product of the entries on the main diagonal of A
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Theorem 4
A square matrix

invertible if and only if det A # 0.
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Theorem 5
If Aisann x n matrix, then det A7 = det A.
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Theorem 6 Multiplicative Property
IfAand Bare n x n matrices, then det AB = (det A)(det B).
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Practice Problems
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1. Compute in as few steps as possible.
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2. Use a determinant to decide if v1,va,and v3 are linearly independent, when
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3.LetAbeann x n matrix such that A2 = I. Show thatdet A = +1.
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