Math 220
6.3: Orthogonal Projections and 6.4: Gram-Schmidt Orthogonalization
Questions for flipped class
Important terms

Gram-Schmidt Orthogonalization:





Two ways to do QR-Factorization (or QR-Decomposition): 





(6.3.4) 


Find the best approximation to  by vectors of the form 
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Expanded example of QR-Factorization from the notes.
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(6.3.5)
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(6.4.2)
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 (6.4.1) 
Find an orthogonal basis for the column space of the matrix.  (Save your work as it will help you on the next question).
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(6.4.3)  
Find a QR factorization for the matrix from (6.4.1)






 (6.4.4)
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(6.3.6)
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(6.3.4 solution)
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(6.3.5 solution)
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(6.4.2 solution)
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(6.4.1 solution)
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 (6.4.3 solution)
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(6.4.4 solution)
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(6.3.6 solution)
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19. Letw 1{w=| -1 |.andus = | 0 | Note that
-2 2 1
y and 3 are orthogonal but that us is not orthogonal to u; or
3. It can be shown that uy is not in the subspace W spanned
by u; and uy. Use this fact to construct a nonzero veetor v in
R that is orthogonal to u; and u.
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the columns of Q were obtained by
applying the Gram-Schmidt process to the columns of A. Find an
upper triangular matrix R such that A = QR. Check your work.
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(T/F) If {v;,v2,v} is an orthogonal basis for W, then
multiplying v by a scalar ¢ gives a new orthogonal basis
vi.vaova),

(T/F) If W = Span {xi, X2, X3} with {x1, X, xa} lincarly in-
dependent, and if {v1, V2., va} is an orthogonal setin W, then
{¥1.v2.v3} is a basis for I,

(T/F) The Gram-Schmidt process produces from a linearly
independent set {x). ..., X, } an orthogonal set {vi....,¥,}
with the property that for cach k, the vectors vi. ..., V¢ span
the same subspace as that spanned by X, . Xc.

(T/F) If xis not in a subspace W, then x — projy x is not zero.

(T/F) If A = QR, where Q has orthonormal columns, then
R=07A.

(T/F) In a QR factorization, say A = QR (when A has
linearly independent columns). the columns of Q form an
orthonormal basis for the column space of A.
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29.

(T/F) 1f 2 is orthogonal to u; and to uy and if W =
Span {u;. s}, then z must be in W+

(T/F) For each y and each subspace W, the vector y — projy,y
is orthogonal to W.

(T/F) The orthogonal projection § of y onto a subspace I’
can sometimes depend on the orthogonal basis for W used to
compute §.

(T/F) If y is in a subspace W, then the orthogonal projection
of y onto W is y itself.

(T/F) The best approximation to y by elements of a subspace
W is given by the vector y — projyy.

(T/F) If W is a subspace of R” and if v is in both W and WL,
then v must be the zero vector.

. (T/F) In the Orthogonal Decomposition Theorem, each term

in formula (2) for s itself an orthogonal projection of y onto
a subspace of W.

(T/F)Ify = 2, + 2,, where z, is ina subspace W and 2, is in
WL, then z; must be the orthogonal projection of y onto W.

(T/F) If the columns of an n x p matrix U are orthonormal,
then U Uy is the orthogonal projection of y onto the column
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14. Note that v, and v, are orthogonal. By the Best Approximation Theorem, the closest point in
Span(y, v, tozis
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19. By the Orthogonal Decomposition Theorem, u, is the sum of a vector in W
v orthogonal to V. This exercse asks forthe vector v:

v LA
v, == o 0| | 5 < 25
L] sl Lus

Any multiple of the vector v will also be in W,
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14. Since A and Q are given,
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1. Callthe columns of the matrix x,, ;. and ; and performthe Gram:Schmidt pocess on these vctors
vi-x,
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15. The columas of @ will be normalized versions of the vectors v, v, and v, found in Exercise 11. Thus
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(T/F) If {v;,v2,v} is an orthogonal basis for W, then
multiplying v by a scalar ¢ gives a new orthogonal basis

V1:¥2:¢%3) Falge - must be a nou-zero scalar

(T/F) If W = Span {xi, X2, X3} with {x1, X, xa} lincarly in-
dependent, and if {v1, V2., va} is an orthogonal setin W, then
{v1.¥2,va} is abasis for W False - v's must be non-zero
(T/F) The Gram-Schmidt process produces from a linearly
independent set {x;.....x,} an orthogonal set {vi.....v,}
with the property that for cach k, the vectors vi. ..., V¢ span
the same subspace as that spanned by X, X¢.  True

(T/F) If xis not in a subspace W, then x — projy x is not zero.

(T/F) If A = QR, where Q has orthonormal columns, then
R=0TA 1.

(T/F) In a QR factorization, say A = QR (when A has
linearly independent columns). the columns of Q form an

orthonormal basis for the column space of A.
True

True
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27.

(T/F) 1f 2 is orthogonal to w; and to wy and if W =
Span {uy. us}. then z must be in W, True

(T/F) For each y and each subspace W, the vector y — projy,y
is orthogonal to W.  True

(T/F) The orthogonal projection § of y onto a subspace I’
can sometimes depend on the orthogonal basis for W used to
compute §.  False

(T/F) If y is in a subspace W, then the orthogonal projection
of yonto W is y itself. True

(T/F) The best approximation to y by elements of a subspace

W is given by the vector y — projyyy.  False - just proj y onto w

(T/F) If W is a subspace of R” and if
then v must be the zero vector.  True

s in both W and WL,

(T/F) In the Orthogonal Decomposition Theorem, each term
in formula (2) for  is itself an orthogonal projection of y onto
a subspace of W.

(T/F)Ify = 2, + 2, where z, is ina subspace W and 2, is in

WL, then z, must be the orthogonal projection of y onto W,  171€
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