Math 163
14.4: Tangent Planes and Linear Approximations
Questions for flipped class

(14.4.1)


Find an equation of the tangent plant to  at the point 
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(14.4.3)



Find the linear approximation of  at  and use it to approximate .  (Round to five decimal places).
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(14.4.1 solution)
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(14.4.2 solution)
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(14.4.3 solution)
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(14.4.4 solution)
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(14.4.5 solution)
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(14.4.6 solution)
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Explain why the function is differentiable at the given point.

fix, y) =2 +e™Ycos(y), (m 0)

and fy(x, ) = s s0

. Both fy and fi, are continuous functions, so fis differentiable

The partial derivatives are fi(x, y) =
film, 0) = and fi(m, 0) =
at (m, 0).

Find the linearization L(x, y) of f(x, y) at (, 0).

Ly =
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Find the differential of the function.

= e8¢ cos(ont)

dz dx+

de
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1f z=3x2+y2 and (x, ) changes from (1, 3) to (0.95, 2.9), compare the values of Az and dz. (Round your answers to
four decimal places.)
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Use differentials to estimate the amount of tin in a closed tin can with diameter 6 cm and height 16 cm if the tin is 0.04 cm
thick. (Round your answer to two decimal places.)
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{Solution or Explanation
2=flx, y) =In(x —3y) = £l y) = U(x —4y), 0 y) = ~4/(x — 4y), 50 £(S, 1) = 1, (5, 1) = —4, and an equation
{of the tangent plane is z =0 = (5, 1)(x = 5) + (5, 1y 1) = 2= 10c=5) + (4)(y =1) or z=x 4y ~1.
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{Solution or Explanation
flx, y) +e™ cos y. The partial derivatives are fi(x, y) = e¥(-y) cos —ye™ cos y and
fiylx, y) = e¥(=sin y) + (cos y)e™¥(~x) = —e™¥(sin y + x cos y), sofy(m, 0) =0 and f,(m, 0) = —m. Both fy and f,, are
‘continuous functions, so f s differentiable at (r, 0), and the linearization of £ at (r, 0) is
Lix, y) = f(m, 0) + f{m, 0)(x — m) + fi{m, 0)(y —0) =3 + 0(x —m) —m(y —0) =3 —my.
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T

f@,y,2) =2 +y’+2> = fx(I,y,Z):W, fyl@,y,2) =

y z
T Wd [a(2,9,2) = s,
VP 422 and f(m0.7) Va2 + P 422 SD

f2(6,2,3) =%, £,(6,2,3)=2, [.(6,2,3)=%
Then the linear approximation of f at (6,2,3) is given by

flz,9,2) = f(6,2,3) + f2(6,2,3)(x — 6) + /,(6,2,3)(y — 2) + £-(6,2,3)(= — 3)
=T+8z—6)+2(y—2)+2(2-3) =So+2Zy+ 2z

(6.01)? + (1.97)? + (2.98) = f(6.01,1.97,2.98)
~ §(6.01) + 2(1.97) + $(2.98) ~ 6.99143 .
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‘Solution or Explanation
z=e8 cos ont =

dz=9Z g+ 92 ge -

o P ~8X(—8) cos Ont dx + e~SX(—sin omt)(om)dt = ~8e~5X cos ont dx — Ome~SX sin ont dt.
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dr = Az = —0.05, dy = Ay = —0.1, 2 = 32 + 42, 2, = 6z, 2, = 2.
Thus when z = 1 and y = 3,
dz = z,(1,3) da + 2,(1,3) dy = (6)(~0.05) + (6)(=0.1) = —0.9 while
Az = £(0.95,2.9) — f(1,3) = 3(0.95)% + (2.9)> — 3 — 9 = —0.8825.
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The volume of a can is V = 772k and AV & dV is an estimate of the
amount of tin. Here dV = 2rrhdr + mr?dh, so put dr = 0.04, dh = 0.08
(0.04 on top, 0.04 on bottom) and then

AV = dV = 2r(48)(0.04) + 7(9)(0.08) & 14.33 cm®. Thus the amount of tin
is about 14.33 cm®.
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