6.1: Inner Product, Length, and Orthogonality
Math 220: Linear Algebra
		
6.1: Inner Product, Length, and Orthogonality



If u and v are vectors in  then we can think of them as  matrices.  


So is a ___________ matrix and the product of  is a _____________ matrix.


We will write this as a real number without brackets, and call  the ___________ ___________________ of u and v.  It is also written as and called the ________ ___________________.
[image: ]




Compute  and  for   and 
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[image: ][image: ]

In  this is essentially the 
___________________________ theorem.

[image: ]
A vector whose length is one is called the _____________ vector.
If we divide a non-zero vector v by it’s length, ______________________________ we get a unit vector in the same direction as v.  This is called _______________________.


 Let .  Find a unit vector u in the same direction as v.








 Let W be a subspace of  spanned by .  Find a unit vector basis for W. 





How do we find the distance between two numbers on a number line?


[image: ]
[image: ]
 


[image: ]

Find the formula for the distance between two vectors

[bookmark: _GoBack]
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If a vector z is orthogonal to every vector in a subspace W of , then z is said to be _______________________________________.  The set of all of these orthogonal vectors to W is called the __________________________ ___________________of W and is denoted by .


[image: ]

[image: ]






[image: ]
Remember our comment in 4.6 that the Null Space and Row Space are essentially orthogonal to each other.
[image: ]
[image: ]
Using the Null Space and Row Space of Ex 5 from 4.6, check that random vectors from each are orthogonal to each other.





[image: ]

Show that    where  is the angle between the two vectors, using the Law of Cosines, 
[image: ]
[image: ]
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Theorem 1
Letu, v, and w be vectors in R", and let ¢ be a scalar. Then

au-v=v-u
b.(utv) w=u-w+v-w
c.(cu)-v=c(u-v)=u-(cv)

du-u>0, andu-u=0 ifandonlyifu=0
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(cuy 4+ ou) - w=ci(u-w)+---+c(u,-w)
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Definition
The length (or norm) of v is the nonnegative scalar ||v|| defined by

[lvll=yv-v=4/v} +v3+-- +v}, and VP =v-v
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llevll = lefIIvll
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Definition
Foruand vin R, the distance between u and v, written as dist(u, v), is
the length of the vector u — v. Thatis,

dist(u, v) = [u—v]|
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Compute the distance between the vectors u = (7,1) and v = (3,2).
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Definition
Two vectors uand v in R are orthogonal (to each other) ifu-v = 0.
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Theorem 2 The Pythagorean Theorem
Two vectors u and v are orthogonal if and only if ||u +v||2 = ||u||2 +||v|
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image27.png
Let W be a plane through the origin in R? , and let L be the line through the
origin and perpendicular to W. If z and w are nonzero, zis on L, and wis in W,
then the segment from 0 to z is perpendicular to the line segment from 0 to
z-w = 0. See Figure 7. So each vector on L is orthogonal to
every win W. In fact, L consists of all vectors that are orthogonal to the w's in
W, and W consists of all vectors orthogonal to the z's in L. That is,

L=W"' and W=L"
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1. Avector x is in WL if and only if x is orthogonal to every vector in a set
that spans W.

2. W is asubspace of R".
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Theorem 3
Let A be an m x n matrix. The orthogonal complement of the row
space of A is the null space of A, and the orthogonal complement of

the column space of A is the null space of AT:

(Row A)" =Nul 4 and (Col 4)" = Nul AT
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u-v=|ul |v]cos v
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