Math 220
4.6: Change of Basis
Questions for flipped class
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a. Find a basis {uj,up,us} for R such that P is the
change-of-coordinates matrix from {uy, us., us} to the ba-
sis {v1,¥2,v3). [Hint: What do the columns of Py
represent?]

b. Find abasis {w;, wy, w3} for R? such that P is the change-
of-coordinates matrix from {v,. V2. v3} to {wy, ), w3}
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(T/F) The columns of the change-of-coordinates matrix o £,
are B-coordinate vectors of the vectors in C.

(T/F) The columns of - P are linearly independent.

(T/F) If V = R" and C is the standard basis for V., then
<P is the same as the change-of-coordinates matrix Py
introduced in Section 4.4.

(T/F) If V = R2, B = {b;, by}, and C = {1, 2}, then row
reduction of [¢; € by by ]to [/ P]produces a ma-
trix P that satisfies [x ], = P[x]_, forall xin V.

In P, find the change-of-coordinates matrix from the basis
B={1-20+1%35+4%2 + 3%} 1o the standard
basis C = {1,£,1%}). Then find the B-coordinate vector for
—1+20

In P, find the change-of-coordinates matrix from the ba-
sis B = {1=312,2+ 1 — 5%, 1 4+ 2} 10 the standard basis.
‘Then write £ as a linear combination of the polynomials in B.
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(T/F) The columns of the change-of-coordinates matrix o £,
are B-coordinate veetors of the vectors in C. g1 ¢ (T 15)

(T/F) The columns of ¢ £y are linearly independent. o

(T/F) If V = R" and C is the standard basis for V. then
<P is the same as the change-of-coordinates matrix Py
introduced in Section 44, True

(T/F) If V = R?, B = {b), by}, and C = {c1, 2}, then row.

reduction of [¢ € by bx]to[/ P ] produces ama-
trix P that satisfies [x ], = P[x] forall Xin V. False, backwards
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2. LetB = {b;, by} andC = {ey, &2} be bases fora vector space
V. and suppose by = —¢, + 4¢3 and b, = 5¢; — 3¢z,
a. Find the change-of-coordinates matrix from B to C.
b. Find [x], forx = 5b; + 3b,.




image2.png
let B = {by. by} and C = {c;. 2} be bases for
RZ. In each exercise, find the change-of-coordinates matrix from
B to C and the change-of-coordinates matrix from C to 5.
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5. Let A=fa,m,a} and B={bibybs} be bases
for a vector space V. and suppose a =dbj by,
= ~by + by + by, and a; = by — 2bs.

a. Find the change-of-coordinates matrix from A to 5.

b. Find [x],, forx = 3a, + das +ay.
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