14.5: The Multivariate Chain Rule
Math 163: Calculus III (Winter 2023)
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· The Chain Rule








From single variable calculus we learned that if  is a differentiable function of , that is , and  is a differentiable function of , that is , then the chain rule for functions of one variable states that:     



Another way we learned this was: If  then 

We can extend this idea to functions in two variables:




The Chain Rule (Case 1): Suppose that  is a differentiable function of x and y, where  and are both differentiable functions of t.  Then z is a differentiable function of t and 


The proof of this is in the book in case you are interested. 













Note that , which means  can be expressed as a function of one variable, .  Hence the notation .  Basically, what we’re doing here is differentiating  with respect to each variable in it and then multiplying each of these by the derivative of that variable with respect to .  The final step is to then add all this up.


Other ways to write the multivariate chain rule are:       






Example 1: Suppose that ,  and 
a) 
Use the chain rule to find .






b) 
Can we find  an easier way?




The method in (b) is not convenient as the number of variables increases!









Example 2: Suppose you have a parametric curve , defined by  and.  Where  represents time and   gives the temperature in the xy-plane.  Find the rate of change of temperature with respect to time as we move along  through .





















The same ideas hold in higher dimensional spaces.





Example 3: Suppose that , ,  and .  Find .













What if  and are multivariable functions?




The Chain Rule (Case 2): Suppose that  is a differentiable function of x and y, where  and are both differentiable functions of s and t.  Then 


   and   




Note that , is a function of  and .  Here we have two first order partial derivatives.  




Example 4:  Find the first partial derivatives of  where  and .





	








Case 2 of the Chain Rule contains three types of variables: s and t are independent variables, x and y are called intermediate variables, and z is the dependent variable.

	To remember the chain rule, it’s helpful to draw a tree diagram.  We start at the top with the function itself and then branch out from that point.  The first set of branches is for the intermediate variables in the function.  From each of these endpoints we put down a further set of branches that gives independent variables.  We connect each letter with a line and each line represents a partial derivative as shown.  Note that the letter in the numerator of the partial derivative is the upper “node” of the tree and the letter in the denominator of the partial derivative is the lower “node” of the tree.
	[image: ]





To use this to get the chain rule we start at the bottom and for each branch that ends with the variable we want to take the derivative with respect to ( in this case) we move up the tree until we hit the top multiplying the derivatives that we see along that set of branches.  Once we’ve done this for each branch that ends at , we then add the results up to get the chain rule for that given situation.
 
Note that we don’t usually put the derivatives in the tree.  They are always an assumed part of the tree.

Example 5:  Use a tree diagram to write down the chain rule for the given derivatives.
a) 




 for  where ,  and 







b) 




 for  where ,  and 











So, provided we can write down the tree diagram (easy), the chain rule can be applied to most any situation we run across.  




The Chain Rule (General Case): Suppose that  is a differentiable function of the n variables  and each  is a differentiable function of m variables .  hence 



for each 

We’ve now seen how to take first derivatives of these more complicated situations, but what about higher order derivatives?  How do we do those?  It’s probably easiest to see how to deal with these with an example.





Example 6:  Compute  for  if  and .




































































	
History: The symbol used to denote partial derivatives is ∂. One of the first known uses of this symbol in mathematics is by Marquis de Condorcet from 1770, who used it for partial differences. The modern partial derivative notation was created by Adrien-Marie Legendre (1786), although he later abandoned it; Carl Gustav Jacob Jacobi reintroduced the symbol in 1841.


· Implicit Differentiation

The final topic in this section is to revisit implicit differentiation.  With these forms of the chain rule, implicit differentiation actually becomes a fairly simple process.  Let’s start out with the implicit differentiation that we saw in a Calculus I course.






We will start with a function in the form (if it’s not in this form simply move everything to one side of the equal sign to get it into this form) where . In single variable calculus, we were asked to find  and this was often a fairly messy process.  Using the chain rule from this section however we can get a nice simple formula for doing this.  We’ll start by differentiating both sides of  with respect to . This will mean using the chain rule:



   Note that  so we will have 


 , solving for :


 which can also be written as 


Example 7: Find  for .












If we have , with  then we can find  and  using the chain rule:




   Note that  and  so we will have 


 , solving for :


  and similarly 



Example 8:  Find  and  for 
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