Math 163
12.5 Questions for flipped class
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Find an equation of the plane.
The plane that passes through (6, 0, =3) and contains the line x

—3t,y=2+5tz=6+4t




image7.png
Find an equation of the plane.

The plane that passes through the line of intersection of the planes x —z = 1and y + 4z = 1 and is perpendicular
to the plane x +y —3z =2
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Find the point at which the line intersects the given plane.

X=1-t y=5+t z=4t; x-y+2z=2
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Find symmetric equations for the line of intersection of the planes.
6x -3y -3z=

w+y+z=5
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A line perpendicular to the given plane has the same direction as a normal
vector to the plane, such as n = (1,3,1). So rg = i + 5k, and we can take
v =i+3j+k. Then a vector equation is
i+ 5k) + t(i+3j + k) = (1+8)i + 3tj + (5 + t)k, and parametric
equations are x = 1 +¢,y =3t, z=5+1.
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v=_([+)x(+k = =i—j+k is the direction of

_
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the line perpendicular to both i+j and j+k. With Py = (3,3,0), parametric
equations are z = 3 +¢, y = 3 —t, z = ¢ and symmetric equations are

—zorz—3——(y—3) ==
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‘Solution or Explanation
Since the direction vectors (6, =3, 9) and (12, 6, 15) are not scalar multiples of each other, the lines aren't parallel. For
ithe lines to intersect, we must be able to find one value of £ and one value of s that produce the same point from the
respective parametric equations. Thus we need to satisfy the following three equations: 9 + 6t =3 + 125,
12-3t=0-6s, 3+9f=12+ 15s. Solving the last two equations we get t =1, s =0 and checking, we see that
these values don't satisfy the first equation. Thus the lines aren't parallel and don't intersect, so they must be skew lines.
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Since the two planes are parallel, they will have the same normal vectors. So
we can take n — (2,1, 1), and an equation of the plane is
Az —4)— (y— (=5)) — (2— (1)) =Oor 2z —y— 2 — 14.
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Here the vectorsa = (7 — 2,4 — (~1),6 — 3) = (5,5,3) and b = (-2 — 2, -3 — (-1), -2 - 3) =
(—4,~2,-5) lic in the planc, so a normal vector to the planc is n = a x b =

(=25 + 6,12+ 25, —10 + 20) = (—19,13,10) and an equation of the plane

is —19(2 — 2) + 13[y — (—1)] + 10(z — 3) = 0 or —19z + 13y + 102 = —21.
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If we first find two nonparallel vectors in the plane, their cross product will
be a normal vector to the plane. Since the given line lics in the plane, its
direction vector a = (—3,5,4) is one vector in the plane. We can verify
that the given point (6,0, —3) does not lie on this line, so to find another
nonparallel vector b which lies in the plane, we can pick any point on the line
and find a vector connecting the points. If we put £ = 0, we see that (3,2, 6)
is on the line, so b = (6 — 3,0 —2,—3— 6) = (3,~2,—9) and n =a x b =
(—45+ 8,12 — 27,6 — 15) = (—37, —15, —9). Thus, an equation of the plane
is —37(x — 6) — 15(y — 0) — 9[z — (—=3)] = 0 or =37z — 15y — 9z = —195.
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n; = (1,0,—-1) and ny = (0,1,4). Setting z = 0, it is casy to see that
(1,1,0) is a point on the line of intersection of & — 2 = 1 and y + 4z = 1.
The direction of this line is v, = n; x ny = (1,—4,1). A second vector
parallel to the desired plane is v5 = (1,1,-3), since it is perpendicular to
24y—32 = 2. Therefore, a normal of the plane in question is n = vy x vy =
(11,4,5). Taking (0,0, %) = (1,1,0), the equation we are looking for is
M(—1)+4(y—1)+52=0 & Ilo+4y+5z—15
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Substitute the parametric equations of the line into the equation of the plane:
(1=t)—(5+)+2(4) =2 = 6t=6 = (= 1. Therefore, the point of
intersection of the line and the plane is given by z = 1—1 =0,y = 5+1 =6,
and z = 4(1) = 4, that is, the point (0,6,4).
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Setting z = 0, the equations of the two planes become 6z — 3y = 0 and
3z+y = 5. Solving these two equations gives z = 1, y = 2 so a point on the
line of intersection is (1,2,0). A vector v in the direction of this intersecting
line is perpendicular to the normal vectors of both planes. So we can use
v=nyxn,=(6,-3,-3) x (3,1,1)

= (0,—15,15) or equivalently we oan take v = (0,—1,1), and symmetric

—Zorr=1y—2=—z

equations for the line are = = 1, i
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Find a vector equation and parametric equations for the line. (Use the parameter t.)
The line through the point (1, 0, 5) and perpendicular to the plane x + 3y +z
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Find parametric equations and symmetric equations for the line. (Use the parameter t.)
The line through (3, 3, 0) and perpendicular to both i +j and j + k
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Determine whether the lines L; and L; are parallel, skew, or intersecting.

Lizx=0+6, y=12-3t z=3+09t
lo:x=3+125, y =0 —6s, z=12 + 155
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Find an equation of the plane.
The plane through the point (4, —

—1) and parallel to the plane 2x —y —z
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Find an equation of the plane.
The plane through the points (2, -1, 3), (7, 4, 6), and (-2, -3, —2)




