Section 13.2: Derivatives and Integrals of Vector Functions
Math 163: Calculus III (Fall 2022)
Derivatives and Integrals of Vector Functions 
· Derivatives



The derivative  of a vector valued function  is defined in much the same as it was for real-valued functions:  if this limit exists.  
	



The geometric significance of this definition is shown in the diagrams to the right.  If the points P and Q have position vectors  and , then  represents the vector which can therefore be regarded as a secant vector.  

	[image: ]

	



If , the scalar multiple  has the same direction and as ,  it appears that this vector approaches a vector that lies on the tangent line.  For this reason, the vector  is called the tangent vector to the curve (provided it exists and is non-zero).  This is shown to the right.

	[image: ]




We will also have occasion to consider the unit tangent vector which is 


The following theorem gives us a convenient method for computing the derivative of a vector function ; just differentiate each component of .


Theorem: If  where f, g, and h are differentiable functions, then 


Example 1: Find the velocity, speed and acceleration of a particle whose motion in space is given by the position vector .












Example 2: Find the unit tangent vector of the curve 



[image: ]
· Integrals
[image: ]
[bookmark: _GoBack]This means we can evaluate an integral of a vector function by integrating each component function.  We can also extend the Fundamental Theorem of Calculus to continuous vector functions as follows:



Example 3: Suppose .  Evaluate the following integrals:
a) 




b) 








Example 4: Suppose we don’t know the path of a hang glider, but only its acceleration vector .  We also know that at take-off (where) the glider departed from the point  with velocity .  Find the glider’s position as a function of .
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