Section 13.2: Derivatives and Integrals of Vector Functions
Math 163: Calculus III (Fall 2022)
Derivatives and Integrals of Vector Functions 
· Derivatives



The derivative  of a vector valued function  is defined in much the same as it was for real-valued functions:  if this limit exists.  
	



The geometric significance of this definition is shown in the diagrams to the right.  If the points P and Q have position vectors  and , then  represents the vector which can therefore be regarded as a secant vector.  

	[image: ]

	



If , the scalar multiple  has the same direction and as ,  it appears that this vector approaches a vector that lies on the tangent line.  For this reason, the vector  is called the tangent vector to the curve (provided it exists and is non-zero).  This is shown to the right.

	[image: ]




We will also have occasion to consider the unit tangent vector which is 


The following theorem gives us a convenient method for computing the derivative of a vector function ; just differentiate each component of .


Theorem: If  where f, g, and h are differentiable functions, then 


Example 1: Find the velocity, speed and acceleration of a particle whose motion in space is given by the position vector .












Example 2: Find the unit tangent vector of the curve 



[image: ]
· Integrals
[image: ]
[bookmark: _GoBack]This means we can evaluate an integral of a vector function by integrating each component function.  We can also extend the Fundamental Theorem of Calculus to continuous vector functions as follows:



Example 3: Suppose .  Evaluate the following integrals:
a) 




b) 








Example 4: Suppose we don’t know the path of a hang glider, but only its acceleration vector .  We also know that at take-off (where) the glider departed from the point  with velocity .  Find the glider’s position as a function of .
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if this limit exists. The geometric significance of this definition is shown in Figure 1. If the
points P and O have position vectors r(r) and r(r + &), then PO represents the vector
K(t + h) = r(s), which can therefore be regarded as a secant vector. If / > 0, the scalar
multiple (1/h)(r(t + k) — r(r)) has the same direction as r(t + h) — r(). As h — 0, it
appears tha this vector approaches & vector that les on the tangent line. For this reason, the
vector (7 i called the tangent veetor 1o the curve defined by r at the point P, provided
that /(1) exists and '(1) # 0. The tangent line to C at P is defined to be the line through P
parallel to the tangent vector r'(). We will also have occasion to consider the unit tangent
vector, which is
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(@ The secant vector PG ®) The tangent vector £6)

“The following theorem gives us a convenient method for computing the derivative of a
Vector function - just differentiate each component of r.

2| Theorem I x(t) = (£(2), 9(0), h(1)) = F(O)1 + 9(0)j + h(®)k, where f, g, and
hare differentiable functions, then

0 = (@, 90,0 =fFOi+ g+ Dk
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Theorem Suppose u and v are differentiable vector functions, ¢ is a scalar,
and f is a real-valued function. Then
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‘This means that we can evaluate an integral of a vector function by integrating each com-
ponent function.

‘We can extend the Fundamental Theorem of Calculus to continuous veetor functions as
follows:

[/x() dr = ROL = RG) - R@)

‘where Ris an antiderivative of r, that is, R'(r) = r(r). We use the notation [ ¢(s) d for indefi-
nite integrals (antiderivatives).
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