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5.3: Diagonalization



If  find .






If  for some invertible P and diagonal D, then is also easy to compute.





Let.  Find a formula for  given that , where  and 











[bookmark: _GoBack]A square matrix A is said to be ___________________________ if A is similar to a diagonal matrix D.
[image: ]
These eigenvectors, since they are linearly independent, form a __________________.



 Diagonalize the matrix, if possible. .  That is, find an invertible matrix P and diagonal matrix D such that .  The eigenvalues are .













Diagonalize the matrix, if possible. .










[image: ]
Note: Having distinct eigenvalues is not a requirement for diagonalizable (see Ex 3).
[image: ]

Diagonalize the matrix, if possible. .
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Theorem 5 The Diagonalization Theorem
Ann X n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors.

Infact, A = PDP~', with D a diagonal matrix, if and only if the columns of
P are n linearly independent eigenvectors of A. In this case, the diagonal
entries of D are eigenvalues of A that correspond, respectively, to the
eigenvectors in P.
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Theorem 6
An n x nmatrix with n distinct eigenvalues is diagonalizable.
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Theorem 7
Let A be an n x n matrix whose distinct eigenvalues are Aq,.. ., /\p

a.For1 < k < p, the dimension of the eigenspace for A;, is less than or
equal to the multiplicity of the eigenvalue Xj.

b. The matrix A is diagonalizable if and only if the sum of the dimensions of
the eigenspaces equals n, and this happens if and only if (i) the characteristic
polynomial factors completely into linear factors and (ii) the dimension of the
eigenspace for each Ay equals the multiplicity of Ay,

c. If A s diagonalizable and By, is a basis for the eigenspace corresponding
to Ak for each &, then the total collection of vectors in the sets By, ..., B,
forms an eigenvector basis for R™ .
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Practice Problems

1. Compute A%, where A = [; 7::] .

-3 12

9 7] » V1= [i] , and vy = [i] . Suppose you are

told that v; and vy are eigenvectors of A. Use this information to
diagonalize A.

2.letA= [

3.LetAbea4 x 4 matrix with eigenvalues 5, 3, and —2, and suppose you
know that the eigenspace for A = 3 is two-dimensional. Do you have
enough information to determine if A is diagonalizable?
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