| 100 | 908 | 808 | 708 | 6051 | 760 | |-----|-----|-----|-----|------|-----| | 3 | 12 | 14 | 141 | t | (| Assessment 2 Mean = 87.5% Name: **Dusty Wilson** Math 220 med = 82.6% If others would but reflect on mathematical truths as deeply and continuously as I have, they would make my discoveries. No work = no credit Non CAS Calculators allowed Johann Carl Friedrich Gauss 1777 - 1855 (German mathematician) Warm-ups (1 pt each): $$\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}}$$ $$\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 \\ 4 \end{bmatrix}} \begin{bmatrix} 3 \\ 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} = \underbrace{\begin{bmatrix} 3 \\ 4 \end{bmatrix}} \begin{bmatrix} 4 \\ 8 \end{bmatrix}$$ 1.) (1 pt) According to Gauss (above), what is the secret to making great mathematical discoveries? Answer using complete English sentences. 2.) (4 pts) Write the general solution of the linear system whose augmented matrix is reduced to: $$X_1 = 5 - 2 \times 2 - 4 \times 2$$ $X_2 = X_2 \text{ (free)}$ $X_3 = 7 - 6 \times 4$ $X_4 = X_4 \text{ (free)}$ 3.) (4 pts) Express \vec{w} as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 4.) (2 pts) For what value(s) of h is $$y = \begin{bmatrix} -6 \\ h \\ 3 \end{bmatrix}$$ in the span of $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 4 \\ 2 \\ 5 \end{bmatrix}$? $$\begin{bmatrix} 1 & 4 & -6 \\ 2 & 2 & 4 \end{bmatrix}$$ $$\begin{bmatrix} 2 & 2 & 4 \\ 2 & 2 & 4 \end{bmatrix}$$ $$\begin{bmatrix} 2 & 2 & 4 \\ 2 & 2 & 4 \end{bmatrix}$$ $$\begin{bmatrix} 2 & 4 & -6 \\ 2 & 2 & 4 \end{bmatrix}$$ $$\begin{bmatrix} 4 & -6 \\ 2$$ includes a linear combination of vectors). $$X_1\begin{bmatrix}1\\4\end{bmatrix} + X_2\begin{bmatrix}2\\5\end{bmatrix} = \begin{bmatrix}3\\6\end{bmatrix}$$ 6.) (4 pts) Complete the following proof. Claim: If $\mathbf{u} \in \mathbb{R}^n$ and c,d are scalars, then $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$. Proof. Let $$\mathbf{u} \in \mathbb{R}^n$$ and scalars c,d be given. $$\Rightarrow (c+d)\vec{u} = (c+d)\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$ $$= \begin{bmatrix} (c+d)u_1 \\ (c+d)u_2 \end{bmatrix}$$ $$= \begin{bmatrix} cu_1 + du_1 \\ cu_2 + du_2 \end{bmatrix}$$ $$= c\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + d\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$ $$= c\vec{u} + d\vec{u}$$ $$= c\vec{u} + d\vec{u}$$ $$= c\vec{u} + d\vec{u}$$ $$= c\vec{u} + d\vec{u}$$