6.5 & 6.6: Least-Squares Problems
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6.5 & 6.6: Least-Squares Problems




We will now look at the case where has no solution.  What would be “closest” possible solution ?  This is called the Least-Squares problem, and it mirrors our Best-Approximation Theorem from 6.3.
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Find a least-squares solution of the inconsistent system  for
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 Find a least-squares solution of the inconsistent system  for
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The distance from b to Ax is called the _______________________  _____________
 Find the least-squares error of Ex 1.




If the columns of A are orthogonal, the least-squares solution is even easier to find.

 Verify the columns of A are orthogonal and find a least-squares solution of.
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Now we’re going to look at finding a best-fit line for a set of data points, also known as linear-regression.
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Find the equation  of the least-squares line that best fits the data points.  










Find the quadratic regression equation  of the least-squares line that best fits the data points.  .
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Definition
IfAism xn andbisin R™, aleast-squares solution of Ax = b isanX
inR"™ such that

[Ib— A% < [b— Ax]|

for all x in R™.
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Theorem 13
The set of least-squares solutions of Ax = b. coincides with the nonempty
set of solutions of the normal equations AT Ax = ATb.
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Theorem 14
Let Abe anm x nmatrix. The following statements are logically equivalent

a. The equation Ax = b has a unique least-squares solution for each b in R™.
b. The columns of A are linearly independent.
c. The matrix AT A is invertible

When these statements are true, the least-squares solution X is given by
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Practice Problems

1 -3 -3 5
1.letA=|1 5 1 andb = [ —3|. Find a least-squares solution of
17 2 —5

Ax = b, and compute the associated least-Squares error.
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The General Linear Model
I some applications, tis necessary to fitdata points with something other than a staight ine. In the examples that
follow, the matrix equation is sil X = y, butthe specific form of X changes from one probler to the next.

Statistcians usually ntroduce a residual vector  , defined by €~ y — X5, and write
y=XB+e

Any equation of this form is referred to as a linear model. Once X and y are determined, the goal i to minimize the
length of & , which amounts o finding a least-squares Solution of X8 — y. In each case, the least-squares solution

£ 1sa soluton of the normal equations
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9. A certain experiment produces the data (1, 7.9), (2, 5.4), and (3,—.9).
Describe the model that produces a least-squares fit of these points by a
function of the form

y=Acos z+Bsinz
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