Multivariable Calculus

16.5: Curl and Divergence
Reading guide
· The main point of the section is to introduce two new mathematical entities: Curl and Div.  

· These will come up again – most notable, curl when discussing Stoke’s Theorem and div when learning about the Divergence Theorem.

· In order to help you connect to these friendly critters (and avoid divergent thoughts that leave you curled up in a corner), we tie these concepts to previously studied topics as if to say … “You shouldn’t be afraid, we have been working with curl and div all along.”  Don’t you feel better now?.
· Key points within the section.

· The definition of curl: _____________________________

· If 
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 has continuous partial derivatives, 
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is conservative iff __________

· The definition of the divergence: _____________________________

· Physical interpretations:

· The curl represents the strength (speed) of a rotation in a fluid (think whirlpool or eddy in a river).

· The divergence represents the net rate change of the mass of a fluid flowing from a point per unit volume.  

· Notation and formulas

· Understand the del operator 
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.
· Formulas 
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 and 
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 are huge.
· Take note of the three theorems 3, 4, and 11.

· Note the tie-ins to Green’s Theorem in formulas 12 and 13.

· The divergence form version of Green’s Theorem (
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) can be thought of in the following manner (a tough read to be sure).
· Picture a gas in a thin box, all of whose particles are moving parallel to the xy-plane.  Suppose that we can approximate the box by a plane (recall that it is in a very thin box) and consider a region R in the plane with boundary 
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 (recall that 
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 is a closed path with positive orientation about R.).

· At any point 
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 represents the velocity vector of the gas, then 
[image: image11.wmf](

)

,

divFxy

v

 measures the net movement from 
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· By summing 
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 over the region R, we get the net change in the amount of gas contained in R.  This is calculated by 
[image: image14.wmf](

)

,

D

divFxydA

òò

v

.

· Another way to measure the net change is to stand on the boundary curve C and measure how much gas leaves at each point.  Here you need the normal component of 
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.  That is, you need 
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.  Thus, the total gas leaving can be found with 
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· Basic questions to test your comprehension

· What do we know about 
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?
· If 
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, compute 
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