Multivariable Calculus

14.6: Directional Derivatives and the Gradient Vector
Reading guide
· Read the attached three pages on the directional derivative and gradient.  
· The good news is that this alternate approach is less dependent upon limits than Stewart and has a more geometric feel.  

· The bad news is that it requires careful reading and works entirely with a function 
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 rather than, like Stewart, separating the 2D case from the 3D.

· Notation: The gradient of a function f  is sometimes written as 
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 and sometimes written with the symbol “del” or “nabla”
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 (an upside down delta).  That is, 
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· The vector 
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 used in this section is a special kind of vector.  What do we call it and how do we calculate them (a review question).
· Basic questions to test your comprehension

· The text shows that 
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, where u is a unit vector.  Why does this express the directional derivative in the direction of u as the scalar projection of the gradient vector u?
· If 
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, what is 
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‘We abserve that the first factor in each product an the right of (3) depends
only on the function f and the coordinates of the point P &t which the partin de.
rivatives of £ are evalusted, while the second factor n cach product 1 indepen.
dent of 7 and depends anly on the direction in which d7ds is being calculeg.
‘These focts suggest that the right side of (3) ought 10 be thought of — and wr.
ten—2s the dot product of two vectors, s folows.
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whete 0is the angle betwcen grad f and u. Since the direcion of 4 can b2 cho
60110 suit our convenience, (5) immedistely yields the first fundamental prop
eny of the gradient:

Property 1 “The directional dervaive dfds in ucy given direction is the seala pro-
section of grad fin thas direction (see Fig, 19.11).

In this scnse, the single veetor grad f contains within itslf the directiona) de-

rivatives of £ st P in all possible direciians.

Figre 1911 Discss desvaive.  Next if wis chosen to pot in the same direction a5 grad , s0 that 0 = 0 and
€05 0 = 1, then (8) shows that dffds has its maximum value— tha s, fincresses

‘mOst apidly—in this dizection. Also. this maximum value equls [grad /. These

remarks give the next two fundamental propeties of the grudient:
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Troperty 2 _The vecur gl poias in e drecion in which 7 ncrezses most rupidly.

Propecty 3_The length of the vectr grad i the masiraum rte of ineresse of 7.

As these remarks show, even though formulas (7) and (8) are equivalent, they
play very diffreat roles in our thinking, for we use (T)to caleulate s uad (8)
10 understand the iatultive mezning of the vector grad f.

Bxample 1 1£f(x,3,2) = 22 =y + 2, find the divectional derivative dds at the
point (1,2, 1) in the direction of the vecton 4i — 2§ + 4k

Soluion At he poini (1,2, 1), we have grad f= 2x = § + 20k = 21 — § + 2k
We obiain  unit vector 1 ia the desired direeton by dividing th given vector

by its own length,
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Formula (7) now gives

s ..,
& guan

REEE RCEEE LS

Thus, the function f is increasing at the rate of 3 unis per unit distance a5 we
Jeave (1,2, 1) in the given direction.
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