Curve Sketching

Part 1: Sign Diagrams

Definition: A <u>critical point</u> or <u>critical value</u> on a graph is a point where the function is discontinuous or has a sharp change in direction. Examples would include (but are not limited to) holes, vertical asymptotes, end points, solitary points, and cusps.

Example 3: Construct a sign diagram of $y = 3x^2(x+2)(x-3)$

Example 4: Construct a sign diagram of $y = \frac{(x+1)(x-1)}{(x+3)(x-1)}$.

Part 2: Sign Diagrams as a Tool for Curve Sketching

So, where do you see the derivative f' on a graph of f? We see it in the slope of the tangents. That is, when f is increasing, f' will be positive. While, if f is decreasing, f' will be negative. Finally, when f is horizontal (at a max, min, etc.), the derivative will be zero. And, of course there is the possibility that f' will be undefined in some places.

Example 1 revisited: Return to example 1 and sketch a sign diagram of f.

Example 2 revisited: Return to example 2 and sketch a sign diagram of f'.

Example 5: Given the sign diagram of f', sketch a graph of f. Related question: Does our sign diagram of f' give us any information about the number of x-intercepts on f?

Example 6: Sketch a graph of $y = (x^2 - 2x)^2$ given that y' = 4x(x-1)(x-2)

$$3 = x^{2}(x-2)^{2}$$

$$4 + 4 + 4 + 4$$

$$3 + 4 + 4$$

$$3 + 4 + 4$$

$$4 + 4 + 4$$

$$3 + 4 + 4$$

$$3 + 4 + 4$$

$$4 + 4 + 4$$

$$3 + 4 + 4$$

$$4 + 4 + 4$$

$$3 + 4 + 4$$

$$4 + 4 + 4$$

$$3 + 4 + 4$$

$$4 + 4 + 4$$

$$3 + 4 + 4$$

$$4 + 4 + 4$$

$$3 + 4 + 4$$

$$4 + 4 + 4$$

$$4 + 4 + 4$$

$$3 + 4 + 4$$

$$4 + 4 + 4$$

$$4 + 4 + 4$$

$$4 + 4 + 4$$

$$4 + 4 + 4$$

$$4 + 4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 + 4$$

$$4 +$$

Example 8: Sketch a graph of
$$f(x) = \frac{1}{4}x^4 - \frac{2}{3}x^3 + \frac{1}{2}x^2 - 2$$

$$f'(x) = x^3 - 2x^2 + x$$

$$= x(x^2 - 2x + 1)$$

$$= x(x-1)^2$$

Example 9: Sketch a graph of
$$g(x) = 3x^5 - 5x^3 + 1$$

$$\Rightarrow g'(x) = 15x^3 - 15x^2$$

$$= 15x^2(x^2 - 1)$$

$$\Rightarrow 15x^2(x + 1)(x - 1)$$