Group Quiz 6
Dusty Wilson
Math 148 - Fall 2011
No work = no credit
\qquad
Ivan C Cugkow bewo

No calculators (or at least not too much)
1.) Suppose a product has dally marginal revenue of $\overline{M R}=46$ and a daily marginal cost $\overline{M C}=30+\frac{1}{5} x$, both in dollars per unit. If the daily fixed cost is $\$ 200$, how many units will give maximum profit? What is the maximum profit? Should this business remain open in the short run? Should it remain open in the long min? Please explain.

$$
\begin{aligned}
& R(x)=\int \sqrt{M} d x=\int 46 d x=46 x+6 \\
& f(0)=46 \times 0 \div(=0 \rightarrow 8=0-\beta(x)=46 x \\
& c(x)=\int \operatorname{mic} d x=\int\left(30+\frac{1}{5} x\right) d x=30 x+\frac{1}{10} x^{2}+C
\end{aligned}
$$

$$
\begin{aligned}
& P(x)=f(x)=\operatorname{ccs}=46 x-30 x-\frac{10}{10} x^{2}=200 \\
& f(x)=-10 x^{2}+16 x-200 \\
& p^{\prime}(x)=-\frac{1}{5} x+16=3=80 \\
& P^{\prime \prime}(x)^{2}=-\frac{1}{5} 50 \\
& \text { Maximum. } \\
& P(80)=\frac{1}{10}: 8 n^{2}+16: 80-200=440
\end{aligned}
$$

If git produce 20 un. danny, nit till give you: a maximum prot if 440: The comply should he main open in then long nh. Beracire what we

2.) Evaluate $I=\int\left(7 x^{3} \sqrt{1-x^{4}}+\frac{3 x}{x^{2}-1}\right) d x$

$$
\begin{aligned}
& \text { let } u=1-x^{4} \\
& d u=4 x^{3} d x \\
&= \begin{array}{l}
\text { et } u=x^{2}-1 \\
d u
\end{array}=2 x d x \\
&=\left(1-x^{4}\right)^{\frac{1}{2}}(-4) x^{3} d x+\frac{3}{2} \int \frac{7 x}{4} \int x^{\frac{1}{2}} d u+\frac{3}{x^{2}-1} \int \frac{d u}{4} \\
& 18=-\frac{14}{12} u^{\frac{3}{2}}+\frac{3}{2} \ln |u|+C \\
&= \left.-\frac{14}{12}\left(1-x^{4}\right)^{3 / 2}+\frac{3}{2} \ln \right\rvert\,\left(x^{2}-u \mid+C\right.
\end{aligned}
$$

3.) Suppose that the marginal propensity to save is $\frac{d S}{d y}=0.5-0.1 e^{-23}$ (in billions of dollars) and consumption is $\$ 7.8$ billion when disposable income is 0 . Find the national consumption function.

$$
\frac{d c}{d y}=1-\frac{d s}{d y}
$$

$$
\text { let } u=-2 y
$$

$$
d u=-2 d y
$$

$$
\begin{aligned}
\frac{d c}{d y} & =1-\left(0.5-0.1 e^{-2 y}\right) \\
& =0.5+0.1 e^{-2 y}
\end{aligned}
$$

$$
\begin{aligned}
c(y) & =\int 0.5 d y+\int 0.1 e^{-2 y} d y \\
& =0.5 y+\frac{0.1}{-2} \int e^{-2 y}(-2) d y
\end{aligned}
$$

17

$$
\begin{aligned}
& =0.5 y-0.05 \int e^{u} d u \\
& =0.5 y-0.05 e^{-2 y}+c \\
7.8 & =0.5(0)-0.05 e^{-2(0)}+c \\
c & =7.85
\end{aligned}
$$

$35 c(y)=0.54-0.05 e^{-x y}+7.85$

