back

Math 225: Multivariable Calculus

Fall 2008

Syllabus

Contents [Top]

Procedural Documents  [Top  Contents]

Note on Mathematica Notebooks

  • Files labeled as "notebooks" or with the file extension "nb" (e.g., example.nb) are created using a program called Mathematica by Wolfram Research. 

  • For those who don't have a license of Mathematica, the notebooks may be viewed using MathReader (which is similar to the way Adobe Acrobat can be used to open, but not edit pdf documents).

 

Calendar
Homework
Presentation schedule

A Halloween Final

You Dirty Rat again

Topics of Study  [Top  Contents]

Topic Handouts Lectures Notes Reading guides
Ch 14: Intro to Partial Derivatives
  • 14.01: Examples of plots in 3-space (here)
  • 14.01: Notebook (here)
  • 14.03: Partial Derivatives notebook (here)
  • 14.04: Tangent planes and differentiability notebook (here)
  • 14.06: The gradient to a level surface notebook (here)
Ch 15: Multiple Integrals
  • 15.02 #32 graph (here)
  • 15.05 polar plot (here)
  • 15.05 Triple Integral (here)
  • 15.07 cylindrical coordinates (here)
  • 15.08 spherical coordinates (here)
  • 15.09 Jacobian notebook(here), Simmons, and Thomas
Ch 16: Vector Calculus

 

Study Guides, Tests and Test Keys  [Top  Contents]
 

Topic Review Test

Test Key

Test 1 Review problems Test 1 (key) and Ch 14 Review Solutions    
Test 2 Notes, Review for Test 2 (key), and Ch 15 Review Solutions    
Test 3 Review for Test 3 (key), and Ch 16 Review Solutions    
Final Exam Review for the Final Exam (formula sheet)    

 

Videos  [Top  Contents]

 

Lesson Topic Link
1 Dot Product  MIT - Multivariable Calculus: 01 - Dot Product 
2 Determinants and Cross ...  MIT - Multivariable Calculus: 02 - Determinants and Cross ... 
3 (I) Matrices and Inverse ...  MIT - Multivariable Calculus: 03 - (I) Matrices and Inverse ... 
4 Square systems and ...  MIT - Multivariable Calculus: 04 - Square systems and ... 
5 Parametric Equations for ...  MIT - Multivariable Calculus: 05 - Parametric Equations for ... 
6 Velocity, Acceleration ...  MIT - Multivariable Calculus: 06 - Velocity, Acceleration ... 
7    
8 Level Curves, Partial ...  MIT - Multivariable Calculus: 08 - Level Curves, Partial ... 
9    
10 Partial Derivatives ...  MIT - Multivariable Calculus: 10 - Partial Derivatives ... 
11 Differentials and Chain Rule  MIT - Multivariable Calculus: 11 - Differentials and Chain Rule 
12 Gradient; Directional ...  MIT - Multivariable Calculus: 12 - Gradient; Directional ... 
13 Lagrange Multipliers  MIT - Multivariable Calculus: 13 - Lagrange Multipliers 
14 Non-independent variables  MIT - Multivariable Calculus: 14 - Non-independent variables 
15 Partial Differential ...  MIT - Multivariable Calculus: 15 - Partial Differential ... 
16 Double  MIT - Multivariable Calculus: 16 - Double 
17 Double Integrals in Polar ...  MIT - Multivariable Calculus: 17 - Double Integrals in Polar ... 
18 Change of Variables  MIT - Multivariable Calculus: 18 - Change of Variables 
19 Vector Fields and Line ...  MIT - Multivariable Calculus: 19 - Vector Fields and Line ... 
20 Path Independence and ...  MIT - Multivariable Calculus: 20 - Path Independence and ... 
21 Gradient fields and ...  MIT - Multivariable Calculus: 21 - Gradient fields and ... 
22 Green Theorem  MIT - Multivariable Calculus: 22 - Green Theorem 
23 Flux and Normal Form of ...  MIT - Multivariable Calculus: 23 - Flux and Normal Form of ... 
24 Simply Connected Regions ...  MIT - Multivariable Calculus: 24 - Simply Connected Regions ... 
25 Triple integrals in ...  MIT - Multivariable Calculus: 25 - Triple integrals in ... 
26 Spherical Coordinates and ...  MIT - Multivariable Calculus: 26 - Spherical Coordinates and ... 
27 Vector Fields in 3D ...  MIT - Multivariable Calculus: 27 - Vector Fields in 3D ... 
28 Divergence Theorem  MIT - Multivariable Calculus: 28 - Divergence Theorem 
29 Divergence Theorem (cont.)  MIT - Multivariable Calculus: 29 - Divergence Theorem (cont.) 
30 Line Integrals in Space ...  MIT - Multivariable Calculus: 30 - Line Integrals in Space ... 
31 Stokes' theorem  MIT - Multivariable Calculus: 31 - Stokes' theorem 
32 Stokes' Theorem (cont ...  MIT - Multivariable Calculus: 32 - Stokes' Theorem (cont ... 
33 Topological ...  MIT - Multivariable Calculus: 33 - Topological ... 
34 Final Review  MIT - Multivariable Calculus: 34 - Final Review 
35 Final Review (cont.)  MIT - Multivariable Calculus: 35 - Final Review (cont.) 
     

 

 

 

Dusty Wilson
Mathematics Instructor
Highline Community College
the home page of ... Dusty Wilson

  last modified March 18, 2014