These are also called the "elementary functions." A partial list is given in section 2.5.
Name and Definition | Graph | Domain and Range | Important Points and Comments |
Constant c(x) = 1 |
D: { x | x Î
Ñ } R: { y | y = 1 } |
All horizontal lines are classified as constants. Even function. |
|
Linear or Identity Function f(x) = x |
D: { x | x Î
Ñ } R: { y | y Î Ñ } |
Goes thru the origin (0,0) Odd function |
|
Absolute Value g(x) = | x | |
D: { x | x Î
Ñ } R: { y | y ³ 0 } |
Goes thru the origin (0,0) Even function
|
|
Quadratic h(x) = x^2 |
D: { x | x Î
Ñ } R: { y | y ³ 0 } |
Goes thru the origin (0,0), (1,1), and (-1,1) Even function
|
|
Cubic m(x) = x^3 |
D: { x | x Î
Ñ } R: { y | y Î Ñ } |
Goes thru the origin (0,0), (1,1), and (-1,-1) Odd function
|
|
Square Root n(x) = x^(1/2) |
D: { x | x ³ 0
} R: { y | y ³ 0 } |
Goes thru the origin (0,0) and (1,1) No symmetry |
|
Cube Root p(x) = x^(1/3) |
D: { x | x Î
Ñ } R: { y | y Î Ñ } |
Goes thru the origin (0,0), (1,1), and (-1,-1) Odd function
|
|
Reciprocal r(x) = 1/x |
D: { x | x ³ 0
or x
£ 0
} R: { y | y ³ 0 or y £ 0 }
|
Goes thru the origin (0,0), (1,1), and (-1,-1) Odd function Horizontal asymptote at y = 0 Vertical asymptote at x = 0
|
|
Sine Function s(x) = sin(x) |
D: { x | x Î
Ñ } R: { y | -1 £ y £ 1 } |
Goes thru the origin (0,0) Odd function Sine is 2*pi periodic |
|
Exponential t(x) = 2^x |
D: { x | x Î
Ñ } R: { y | y > 0 } |
Goes thru the origin (0,0), (1,2), and (-1,1/2). No symmetry Horizontal asymptote at y = 0 The general exponential b^x, b>0 and not b = 1 goes thru (1,b) and (-1,1/b). The case where 0 < b < 1 gives a graph similar to 2^x except reflected about the y axis. |
[../../../../../Footer.htm]
last modified September 05, 2007