Math 220

Assessment 2
Dusty Wilson

1. Warm-ups

No work $=$ no credit $\bar{x}=68.9 \% /$

$$
\text { med }=69.4 \%
$$

(a) (1 point) $\vec{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$

$$
\max =95.7 \%
$$

(b) (1 point) $\vec{e}_{2} \vec{e}_{2}^{T}=\left[\begin{array}{l}0 \\ 1\end{array}\right]^{\left[\begin{array}{ll}0 & 1\end{array}\right]}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$
(c) (1 point) $\vec{e}_{2}^{T} \vec{e}_{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]\left[\begin{array}{c}1 \\ 1\end{array}\right]=[1]$
2. (1 point) What does Gauss see as the key to his mathematical discoveries? Answer using complete English sentences.
Deep and continvorg reflection was Gauss' key to mathematical discovery
3. (7 points) Answer the following in regards to the system below.

$$
\begin{array}{r}
x_{1}+3 x_{2}+x_{3}=0 \\
-4 x_{1}-9 x_{2}+2 x_{3}=0 \\
-3 x_{2}-6 x_{3}=0
\end{array}
$$

(a) (1 point) Write the system as a vector equation.

$$
x_{1}\left[\begin{array}{c}
1 \\
-4 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
3 \\
-9 \\
-3
\end{array}\right]+x_{3}\left[\begin{array}{c}
1 \\
2 \\
-6
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

(b) (1 point) Write the system as a matrix equation.

$$
\left[\begin{array}{ccc}
1 & 3 & 1 \\
-4 & -4 & 2 \\
0 & -3 & -6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

(c) (4 points) Find all solutions) to this system. Write your answer in vector form

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
1 & 3 & 1 & 0 \\
-4 & -4 & 2 & 0 \\
0 & -3 & -6 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & -5 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
\Rightarrow \vec{x}=x_{3}\left[\begin{array}{c}
5 \\
-2 \\
1
\end{array}\right]
\end{gathered}
$$

(d) (1 point) The process you used to find solutions) to this system are an example of seeking
Non. Inviral solutions so the homogeneous equation:
4. (4 points) Write vectors \vec{a} and \vec{b} as linear combinations of \vec{u} and \vec{v}.

$$
\begin{aligned}
& \vec{a}=3 \vec{a}+\vec{v} \\
& \vec{b}=-4 \vec{a}-\vec{v}
\end{aligned}
$$

5. (6 points) Answer the following:
(a) (2 points) What condition must $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$ in \mathbb{R}^{n} satisfy for the set to be linearly independent?

$$
\begin{aligned}
& a_{1}+\ldots+c \vec{v}_{m}=\overrightarrow{0} \text { most only } \\
& \text { have the trivial solution }
\end{aligned}
$$

(b) (2 points) What conditions must $T(\vec{x})=A \vec{x}$ satisfy in order to be a linear transformation?

$$
\begin{aligned}
& T(\bar{x}+\vec{y})=T(\bar{x})+T(\bar{y}) \\
& T(C \bar{x})=C T(\bar{x})
\end{aligned}
$$

(c) (2 points) True or false: If a set in \mathbb{R}^{n} is linearly dependent, then the set contains more vectors than there are entries in each vector. Justify your answer.

$$
\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\} \text { is a L.D. } \operatorname{set}
$$

6. (4 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right.$) $=\left[\begin{array}{c}x_{1}+x_{2} \\ 4 x_{1}+5 x_{2}\end{array}\right]$. Find \vec{x} such that $T(\vec{x})=\left[\begin{array}{l}3 \\ 8\end{array}\right]$.

$$
\begin{aligned}
& T(\vec{x})= {\left[\begin{array}{ll}
1 & 1 \\
4 & 5
\end{array}\right] \vec{x} } \\
& \text { solve } {\left[\begin{array}{ll|l}
1 & 1 & 3 \\
4 & 5 & 8
\end{array}\right] } \\
& \sim\left[\begin{array}{cc|c}
1 & 0 & 7 \\
0 & 1 & -4
\end{array}\right] \\
& \Rightarrow \vec{x}=\left[\begin{array}{c}
7 \\
-4
\end{array}\right]
\end{aligned}
$$

7. (4 points) Prove the following.

Claim: For all \vec{u} in \mathbb{R}^{n} and all scalars c and $d:(c+d) \vec{u}=c \vec{u}+d \vec{u}$
Let $\vec{\pi} \in \mathbb{R}^{N}$ and scalars c, d be given.

$$
\begin{aligned}
& (c+d) \vec{\mu}=(c+d)\left[\begin{array}{l}
m_{1} \\
\mu_{\mu}
\end{array}\right] \quad \nabla=\left[\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{\nu}
\end{array}\right]+\left[\begin{array}{c}
d_{\mu_{1}} \\
\vdots \\
\alpha_{m_{\mu}}
\end{array}\right] \\
& =\left[\begin{array}{cc}
c+d) & m_{1} \\
c \\
c+d u_{r}
\end{array}\right] \\
& =\left[\begin{array}{c}
c u_{1}+d u_{\nu} \\
c u_{r}+d u_{N}
\end{array}\right]=c \vec{u}+d \vec{\lambda}
\end{aligned}
$$

$\therefore(c+d) \vec{r}=c \vec{\pi}+d \vec{n}$

