Math 220
Winter 2024
Assessment 7
Dusty Wilson
No work $=$ no credit

1. Warm-ups

One time [musician] Robert Plant was set to check into the same room after I checked out, so I removed every light bulb and ordered up a bunch of stinky cheese and put it under the mattress. Richard Marx singer
(a) (1 point) If $A \vec{v}=\lambda \vec{v}$, what is $A^{2} \vec{v}$
(b) (1 point) Eigenvalue(s) of $I_{2 x 2}$
(c) (1 point) If A is singular, then an $\begin{aligned} & \text { eigenvalue is: }\end{aligned}$
2. (1 point) In reference to the quote above, what is the best practical joke you have taken part in? Answer using complete English sentences.
3. (4 points) Find the eigenspace of $A=\left[\begin{array}{rrr}4 & 2 & 3 \\ -1 & 1 & -3 \\ 2 & 4 & 9\end{array}\right]$ with associated eigenvalue $\lambda=3$. Is every vector in this eigenspace an eigenvector?
4. (2 points) True or False: If A is diagonalizable, then A is invertible. Justify your answer.
5. (4 points) Find the eigenvalue(s) and eigenvector(s) of matrix $A=\left[\begin{array}{rrr}6 & -2 & 0 \\ -2 & 9 & 0 \\ 5 & 8 & 3\end{array}\right]$.
6. (4 points) The matrix $A=\left[\begin{array}{rrr}2 & 2 & -1 \\ 1 & 3 & -1 \\ -1 & -2 & 2\end{array}\right]$ has eigenvalues $\lambda=5$, 1. Diagonalize A.
7. (4 points) Matrix $A=\left[\begin{array}{rr}-2 & 12 \\ -1 & 5\end{array}\right]$ has eigenvectors $\vec{v}_{1}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{l}4 \\ 1\end{array}\right]$. The associated eigenvalues are $\lambda=2,1$.
If $x_{0}=\left[\begin{array}{l}8 \\ 2\end{array}\right]$ and $\vec{x}_{t}=A^{t} \vec{x}_{0}$, find a closed form expression for \vec{x}_{t} and $\vec{x}_{e q u}$
8. (4 points) Find the eigenvalues and a basis for each eigenspace of $\left[\begin{array}{rr}0 & 1 \\ -8 & 4\end{array}\right]$

