Math 220 Winter 2024 Assessment 7 Dusty Wilson

No work = no credit

- 1. Warm-ups
 - (a) (1 point) If $A\vec{v} = \lambda \vec{v}$, what is $A^2\vec{v}$
 - (c) (1 point) If A is singular, then an eigenvalue is:

One time [musician] Robert Plant was set to check into the same room after I checked out, so I removed every light bulb and ordered up a bunch of stinky cheese and put it under the mattress. Richard Marx singer

(b) (1 point) Eigenvalue(s) of I_{2x2}

- 2. (1 point) In reference to the quote above, what is the best practical joke you have taken part in? Answer using complete English sentences.
- 3. (4 points) Find the eigenspace of $A = \begin{bmatrix} 4 & 2 & 3 \\ -1 & 1 & -3 \\ 2 & 4 & 9 \end{bmatrix}$ with associated eigenvalue $\lambda = 3$. Is every vector in this eigenspace an eigenvector?

4. (2 points) True or False: If A is diagonalizable, then A is invertible. Justify your answer.

	6	-2	0]	
5. (4 points) Find the eigenvalue(s) and eigenvector(s) of matrix $A =$	= -2	9	0	•
	5	8	3	

6. (4 points) The matrix $A = \begin{bmatrix} 2 & 2 & -1 \\ 1 & 3 & -1 \\ -1 & -2 & 2 \end{bmatrix}$ has eigenvalues $\lambda = 5, 1$. Diagonalize A.

7. (4 points) Matrix $A = \begin{bmatrix} -2 & 12 \\ -1 & 5 \end{bmatrix}$ has eigenvectors $\vec{v_1} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\vec{v_2} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$. The associated eigenvalues are $\lambda = 2, 1$. If $x_0 = \begin{bmatrix} 8 \\ 2 \end{bmatrix}$ and $\vec{x_t} = A^t \vec{x_0}$, find a closed form expression for $\vec{x_t}$ and $\vec{x_{equ}}$ 8. (4 points) Find the eigenvalues and a basis for each eigenspace of $\begin{bmatrix} 0 & 1 \\ -8 & 4 \end{bmatrix}$