Math 220 Winter 2024 Assessment 6 Dusty Wilson	Name: We have to push the boundaries, take the risks. Without that, there is no science. No medicine.
No work $=$ no credit	Dr. Michael Morbius in <i>Morbius</i> (2022)
1. Warm-ups	
(a) (1 point) \mathbb{P}_n isomorphic with \mathbb{R}	(b) (1 point) min rank of $A_{2\times 3}$

⁽c) (1 point) max rank of $A_{2\times 3}$

- 2. (1 point) In reference to the quote above, what is required for science and medicine to exist? Answer using complete English sentences.
- 3. (4 points) Prove (or disprove) the Unique Representation Theorem.

Claim: Let $B = \{\vec{b}_1, ..., \vec{b}_n\}$ be a basis for a vector space V. Then for each $\vec{x} \in V$, there exists a unique set of scalars $c_1, ..., c_n$ such that $\vec{x} = c_1 \vec{b}_1 + ... + c_n \vec{b}_n$.

4. (4 points) Consider the subspace $H = \{(a, b, c) : a - 3b + c = 0, b - 2c = 0, a - 2b - c = 0\}$. Find a basis and state the dimension of H.

5. (4 points) Find $[\vec{x}]_{\mathcal{B}}$ if $\mathcal{B} = \left\{ \begin{bmatrix} 2\\ -9 \end{bmatrix}, \begin{bmatrix} 1\\ 8 \end{bmatrix} \right\}$ and $\vec{x} = \begin{bmatrix} 13\\ 4 \end{bmatrix}$

6. (2 points) True or False: The number of variables in the equation $A\vec{x} = \vec{0}$ equals the nullity of A. Justify your answer.

7. (4 points) Let $\mathcal{B} = \left\{ \begin{bmatrix} 7\\-2 \end{bmatrix}, \begin{bmatrix} 2\\-1 \end{bmatrix} \right\}$ and $\mathcal{C} = \left\{ \begin{bmatrix} 4\\1 \end{bmatrix}, \begin{bmatrix} 5\\2 \end{bmatrix} \right\}$ be bases for \mathbb{R}^2 . Find the change-ofcoordinates matrix from \mathcal{B} to \mathcal{C} and find the \mathcal{C} -coordinates of $\begin{bmatrix} 1\\1 \end{bmatrix}_{\mathcal{B}}$