Math 220	Name:
Spring 2024 Assessment 5 Dusty Wilson	Sophie Germain proved to the world that even a woman can accomplish something in the most rigorous and abstract of sciences.
No work $=$ no credit	Carl Friedrich Gauss (1777-1855) German mathematician
1. Warm-ups	
(a) (1 point) $\vec{e}_1^T \vec{e}_1$	(b) (1 point) $\vec{e_1} \ \vec{e_2}^T$

- (c) (1 point) If $A_{n \times m}$ then rank+nullity = _____
- 2. (1 point) Based upon the quote by Gauss (above), name a famous female mathematician? Answer using complete English sentences.
- 3. (2 points) True or False. A plane in \mathbb{R}^3 is a two-dimensional subspace of \mathbb{R}^3 . Justify your answer.
- 4. (4 points) The set $\mathcal{B} = \{1 + 2t, 3 + 5t\}$ is a basis for \mathbb{P}_1 . Find the coordinate vector of p(t) = 1 + t relative to \mathcal{B} .

5. (2 points) The subspace $H = \text{span}\{\vec{v}_1, \vec{v}_2\}$. List all possible value(s) for dim(H).

- 6. (7 points) Consider matrix $C = \begin{bmatrix} 1 & 0 & 3 & 4 & 2 & -1 \\ 2 & 0 & 1 & 3 & -1 & 3 \\ 3 & 0 & 4 & 7 & 1 & 2 \\ 4 & 0 & 1 & 5 & -3 & 7 \end{bmatrix}$.
 - (a) (2 points) Find a basis for the column space of C

- (b) (1 point) The rank of C
- (c) (2 points) The null space of C

- (d) (1 point) A basis for row(C)
- (e) (1 point) Choose any non-zero $\vec{u} \in \text{nul}(C)$ and $\vec{v} \in \text{row}(C)$ and then find $\vec{v} \cdot \vec{u}$

7. (4 points) Prove (or disprove) the Unique Representation Theorem.

<u>Claim</u>: Let $B = \left\{ \vec{b}_1, ..., \vec{b}_n \right\}$ be a basis for a vector space V. Then for each $\vec{x} \in V$, there exists a unique set of scalars $c_1, ..., c_n$ such that $\vec{x} = c_1 \vec{b}_1 + ... + c_n \vec{b}_n$.

8. (6 points) Let
$$\mathcal{B} = \left\{ \begin{bmatrix} 2\\2 \end{bmatrix}, \begin{bmatrix} 0\\4 \end{bmatrix} \right\}$$
 and $\mathcal{C} = \left\{ \begin{bmatrix} 3\\-2 \end{bmatrix}, \begin{bmatrix} -1\\7 \end{bmatrix} \right\}$ be bases for \mathbb{R}^2 .
(a) (2 points) If $[\vec{y}]_{\mathcal{B}} = \begin{bmatrix} -1\\1 \end{bmatrix}$, find \vec{y}

(b) (2 points) Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}

(c) (2 points) Find the *C*-coordinates of $[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} -7\\9 \end{bmatrix}$