	Name:
Math 220	
Winter 2024	What is real? How do you define 'real'?
Assessment 4	If you're talking about what you can feel,
Dusty Wilson	what you can smell, what you can taste and
·	see, then 'real' is simply electrical signals
No work $=$ no credit	interpreted by your brain.
	Morpheus in <i>The Matrix</i> (1999)
1. Warm-ups	
(a) (1 point) AA^{-1}	(b) (1 point) $\vec{e}_2 \vec{e}_2^T$
	· · · · · · · · · · · · · · · · · · ·
(c) (1 point) $\vec{e}_2^T \vec{e}_2$	

2. (2 points) In light of the quote by Morpheus, what is real? Answer using complete English sentences.

3. (4 points) Calculate $\begin{vmatrix} 1 & 2 \\ 4 & 3 \end{vmatrix}$. Is this determinant invertible? Why or why not.

4. (4 points) Find the determinant of $A = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 3 & 1 \\ 1 & 1 & 1 \end{bmatrix}$. Is A invertible? Why or why not.

5. (4 points) Find the determinant of $B = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 0 & -5 & 0 & 0 \\ 2 & 2 & 5 & 4 \\ 0 & 3 & 0 & 1 \end{bmatrix}$. Is *B* invertible? Why or why not.

6. (7 points) For the matrix $A_{n \times n}$, there are at least 13 statements equivalent to, "A is invertible." List at least seven of them. List more for extra credit (2 points max).

i.) A is invertible	vi.)
ii.)	vii.)
iii.)	viii.)
iv.)	xi.) (1 pt extra credit)
v.)	x.) (1 pt extra credit)

What is your name (for the calculator portion):

7. (2 points) True or False: The determinant of A is the product of the diagonal entries in A. Justify your answer.

8. (4 points) One interpretation of the determinant is as the scaling factor of a linear transformation. For example, "A region with area X becomes a region of area X * det(A) under the linear transformation $T(\vec{x}) = A\vec{x}$ "

If $A = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$, (a.) find and (b.) interpret the determinants of A and A^{-1} using the language of scaling factors.

9. (4 points) Given the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}$ and vector $\vec{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, solve the matrix equation $A\vec{x} = \vec{b}$ using the matrix inverse. You may use a calculator, but show enough work so that it is clear that you

10. (4 points) Prove the following.

could do this by hand if necessary.

<u>Claim</u>: If A is an invertible $n \times n$ matrix, then for each \vec{b} in \mathbb{R}^n , the equation $A\vec{x} = \vec{b}$ has the unique solution $\vec{x} = A^{-1}\vec{b}$.