Math 220
Spring 2024
Assessment 3
Dusty Wilson
No work $=$ no credit

Name:
When a philosopher says something that is true then it is trivial. When he says something that is not trivial then it is false. Carl Friedrich Gauss (1777-1855)
German mathematician

1. Warm-ups
(a) (1 point) I^{2}
(b) (1 point) $\vec{e}_{1} \vec{e}_{2}^{T}$
(c) (1 point) $\vec{e}_{1}^{T} \vec{e}_{1}$
2. (1 point) Based upon the quote by Gauss (above), what do you think Gauss' view of philosophers was? Answer using complete English sentences.
3. (8 points) If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 6\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 2 \\ 1 & 3\end{array}\right]$, find the following:
(a) (2 points) $2 A+B$
(b) (2 points) $A^{T}+B$
(c) (2 points) $A B$
(d) (2 points) $B A$
4. (7 points) For the matrix $A_{n \times n}$, there are at least 13 statements equivalent to, " A is invertible." List at least seven of them. List more for extra credit (2 points max).

i.) A is invertible	vi.)
ii.)	vii.)
iii.)	viii.)
iv.)	xi.) (1 pt extra credit)
v.)	x.) (1 pt extra credit)

5. (4 points) Given the matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6\end{array}\right]$ and vector $\vec{b}=\left[\begin{array}{c}4 \\ 7 \\ 11\end{array}\right]$, solve the matrix equation $A \vec{x}=\vec{b}$ using the matrix inverse. You may use a calculator, but show enough work so that it is clear that you could do this by hand if necessary.
6. (4 points) Explain the process for finding the inverse of an $n \times n$ matrix A.
7. (2 points) True or False. If the equation $A_{n \times n} \vec{x}=\overrightarrow{0}$ has only the trivial solution, then A is row equivalent to the $n \times n$ identity matrix. Justify your answer.
8. (4 points) Prove the following (without reference to the invertible matrix theorem).

Claim: If A is an invertible $n \times n$ matrix, then for each \vec{b} in \mathbb{R}^{n}, the equation $A \vec{x}=\vec{b}$ has the unique solution $\vec{x}=A^{-1} \vec{b}$.

