Math 220 Spring 2024 Assessment 3 Dusty Wilson

No work = no credit

- 1. Warm-ups
 - (a) (1 point) I^2
 - (c) (1 point) $\vec{e}_1^T \vec{e}_1$

When a philosopher says something that is true then it is trivial. When he says something that is not trivial then it is false. Carl Friedrich Gauss (1777-1855) German mathematician

(b) (1 point) $\vec{e}_1 \vec{e}_2^T$

2. (1 point) Based upon the quote by Gauss (above), what do you think Gauss' view of philosophers was? Answer using complete English sentences.

3. (8 points) If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 \\ 0 & 2 \\ 1 & 3 \end{bmatrix}$, find the following:
(a) (2 points) $2A + B$

(b) (2 points) $A^T + B$

(c) (2 points) AB

(d) (2 points) BA

Name:

4. (7 points) For the matrix $A_{n \times n}$, there are at least 13 statements equivalent to, "A is invertible." List at least seven of them. List more for extra credit (2 points max).

	i.) A is invertible	vi.)
-	ii.)	vii.)
-		
-	iii.)	viii.)
-	iv.)	xi.) (1 pt extra credit)
	v.)	x.) (1 pt extra credit)

5. (4 points) Given the matrix $A =$	1 1 1	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	1 3 6	and vector $\vec{b} = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}$	4 7 11	, solve the matrix equation $A\vec{x} = \vec{b}$		
using the matrix inverse. You may use a calculator, but show enough work so that it is clear that you								
could do this by hand if necessary.								

6. (4 points) Explain the process for finding the inverse of an $n \times n$ matrix A.

7. (2 points) True or False. If the equation $A_{n \times n} \vec{x} = \vec{0}$ has only the trivial solution, then A is row equivalent to the $n \times n$ identity matrix. Justify your answer.

8. (4 points) Prove the following (without reference to the invertible matrix theorem).

<u>Claim</u>: If A is an invertible $n \times n$ matrix, then for each \vec{b} in \mathbb{R}^n , the equation $A\vec{x} = \vec{b}$ has the unique solution $\vec{x} = A^{-1}\vec{b}$.