Math 220
Winter 2024
Assessment 3
Dusty Wilson
No work $=$ no credit

Name:
[S]ooner or later you're going to realize just as I did that there's a difference between knowing the path and walking the path.
Morpheus in The Matrix (1999)

1. Warm-ups
(a) (1 point) \vec{e}_{1}
(b) (1 point) $\vec{e}_{2} \vec{e}_{1}^{T}$
(c) (1 point) $\vec{e}_{1}^{T} \vec{e}_{2}$
2. (1 point) In light of the quote by Morpheus, what is a path that you know and yet struggle to walk? Answer using complete English sentences.
3. (4 points) What does it mean for a set to be linearly independent?
4. (4 points) (a.) Suppose T is a linear transformation such that $T\left(\vec{e}_{1}\right)=\vec{u}$ and $T\left(\vec{e}_{2}\right)=\vec{v}$.
(a.) Find the matrix A of the linear transformation where $T(\vec{x})=A \vec{x}$
(b.) find $T\left(\left[\begin{array}{c}5 \\ -1\end{array}\right]\right)$.

5. (2 points) True or False: If S is a linearly dependent set, then each vector is a linear combination of the other vectors in S. Justify your answer.
6. (4 points) Determine if the columns of the matrix form a linearly independent set. Justify your answer.

$$
A=\left[\begin{array}{rrr}
0 & -8 & 5 \\
3 & -7 & 4 \\
-1 & 5 & -4 \\
1 & -3 & 2
\end{array}\right]
$$

7. (4 points) Consider the linear transformation T where $T(\vec{x})=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
a.) Describe the "image" of T geometrically.
b.) Is T "onto"? Why or why not?
8. (4 points) Prove the following.

Claim: If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ in \mathbb{R}^{n} is linearly dependent if $p>n$.
9. (4 points) (a.) Suppose $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ that projects objects in 3 D onto the $x_{1} x_{2}$-plane and rotates them 60° counter-clockwise. For example $T\left(\vec{e}_{1}\right)=\left[\begin{array}{c}\frac{1}{2} \\ \frac{\sqrt{3}}{2}\end{array}\right]$ and $T\left(\vec{e}_{3}\right)=\overrightarrow{0}$.

Hint: What is $T\left(\vec{e}_{2}\right)$
a.) What is the matrix of the linear transformation?
b.) Is T "one-to-one"? Why or why not?

