Math 220 Winter 2024 Assessment 2 Dusty Wilson

Name:

Unfortunately, no one can be told what the Matrix is. You have to see it for yourself.

Morpheus in The Matrix (1999)

No work = no credit

- 1. Warm-ups
 - (a) (1 point) $1 + 2 \times 3 =$

(b) (1 point) A square matrix:

- (c) (1 point) A zero vector:
- 2. (1 point) In light of the quote by Morpheus, what is an aspect of this class that must be experienced first hand? Answer using complete English sentences.
- 3. (4 points) Give an example of an augmented matrix in reduced echelon form that has three pivots, two free variables, and describes an inconsistent system.

4. (4 points) (a.) Write the vector \vec{x} as a linear combination of \vec{u} and \vec{v} . And (b.) what would be the coordinates of $\vec{u} - \vec{v}$ using normal rectangular coordinates?

5. (2 points) True or False: The weights $c_1, ..., c_p$ in a linear combination $c_1 \vec{v_1} + ... + c_n \vec{v_n}$ cannot all be zero. Justify your answer.

6. (4 points) Write as a matrix equation and find two solutions.

$$x_1 \begin{bmatrix} 4\\-2 \end{bmatrix} + x_2 \begin{bmatrix} -4\\5 \end{bmatrix} + x_3 \begin{bmatrix} -5\\4 \end{bmatrix} + x_4 \begin{bmatrix} 3\\0 \end{bmatrix} = \begin{bmatrix} 4\\13 \end{bmatrix}$$
(1)

7. (2 points) Let
$$\vec{v_1} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
, $\vec{v_2} = \begin{bmatrix} 4\\5\\6 \end{bmatrix}$, and $\vec{v_3} = \begin{bmatrix} 7\\8\\9 \end{bmatrix}$. Does $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ span \mathbb{R}^3 ? Why or why not.

8. (4 points) Consider matrix A. Find all solutions to the homogeneous equation and write the answer in vector form (as we did repeatedly in class).

A =	0	1	5	7	4	
	0	2	6	10	4	
	0	3	7	13	4	
	0	4	8	16	4	

9. (4 points) This question is about the outline/formatting of a basic mathematical proof. Show how you would format a mathematical proof of property (vi). You do NOT need to actually prove this and may simply leave a blank space where the math/logic would normally go.

For an extra credit point you may prove the property.

Algebraic Properties of \mathbb{R}^n For all u, v, w in \mathbb{R}^n and all scalars c and d: (i) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (ii) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (iii) $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$ (iv) $\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$, where $-\mathbf{u}$ denotes (-1) \mathbf{u} (v) $c (\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (vi) $(c + d) \mathbf{u} = c\mathbf{u} + d\mathbf{u}$ (vii) $c (d\mathbf{u}) = (cd) \mathbf{u}$ (viii) $1\mathbf{u} = \mathbf{u}$