Project 1: Span Individual Assignments April 13, 2024

Version: 445
$v_1 = \begin{pmatrix} 3 \\ -2 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} -2 \\ -4 \end{pmatrix} (blue)$
$x = \begin{pmatrix} -1 \\ -10 \end{pmatrix}$ (position vector in Cartesian coordinates)
1st coordinate in v_1 direction and 2nd in v_2 direction: ${1 \choose 1}$
Version: 522
$v_1 = \begin{pmatrix} -2 \\ -3 \end{pmatrix} $ (red) and $v_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ (blue)
$x = \begin{pmatrix} -6 \\ -1 \end{pmatrix}$ (position vector in Cartesian coordinates)
1st coordinate in v_1 direction and 2nd in v_2 direction: $\left($
Version: 555
$v_1 = \begin{pmatrix} -2 \\ -3 \end{pmatrix} (red)$ and $v_2 = \begin{pmatrix} -3 \\ 1 \end{pmatrix} (blue)$
$x = \begin{pmatrix} 1 \\ -4 \end{pmatrix}$ (position vector in Cartesian coordinates)
1st coordinate in v_1 direction and 2nd in v_2 direction: $\begin{pmatrix} -2 \\ -1 \end{pmatrix}$

$$v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} -1 \\ 3 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} 0 \\ -5 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\left(\begin{array}{c}2\\-3\end{array}\right)$

Version: 769

$$v_1 = \begin{pmatrix} 1 \\ 3 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} -4 \\ -1 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} 5 \\ -7 \end{pmatrix} (position vector in Cartesian coordinates)$

1st coordinate in v_1 direction and 2nd in v_2 direction: $\begin{pmatrix} 2 \\ -2 \end{pmatrix}$

Version: 803

$$v_1 = \begin{pmatrix} 4 \\ -3 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: ${-1 \choose -2}$

Version: 906

$$v_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} -2 \\ -4 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} -5 \\ -6 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\binom{-4}{2}$

$$v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix} (blue)$$

$$x = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$$
 (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\left(\begin{array}{c} -2\\2\end{array}\right)$

Version: 1257

$$v_1 = \begin{pmatrix} -4 \\ 2 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} -1 \\ -2 \end{pmatrix} (blue)$$

$$x = \begin{pmatrix} -5 \\ 10 \end{pmatrix}$$
 (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\begin{pmatrix} 2 \\ -3 \end{pmatrix}$

Version: 1402

$$v_1 = \begin{pmatrix} 3 \\ -1 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} -4 \\ -2 \end{pmatrix} (blue)$$

$$x = \begin{pmatrix} 2 \\ 6 \end{pmatrix}$$
 (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\begin{pmatrix} -2 \\ -2 \end{pmatrix}$

Version: 1415

$$v_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} -1 \\ -3 \end{pmatrix} (blue)$$

$$x = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$$
 (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\binom{-2}{2}$

$$v_1 = \begin{pmatrix} -4 \\ 1 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} 0 \\ 5 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\begin{pmatrix} -3 \\ -4 \end{pmatrix}$

Version: 1553

$$v_1 = \begin{pmatrix} -3 \\ 2 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} 4 \\ 3 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} 7 \\ 1 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\begin{pmatrix} -1 \\ -2 \end{pmatrix}$

Version: 1598

$$v_1 = \begin{pmatrix} -1 \\ -2 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} 1 \\ -3 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} -5 \\ -5 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\begin{pmatrix} 8 \\ -2 \end{pmatrix}$

Version: 1626

$$v_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} -2 \\ -1 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\begin{pmatrix} -4 \\ 3 \end{pmatrix}$

$$v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\left(\begin{array}{c} 6\\ -1\end{array}\right)$

Version: 1708

$$v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\begin{pmatrix} 6 \\ -1 \end{pmatrix}$

Version: 1724

$$v_1 = \begin{pmatrix} -2 \\ -1 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} -3 \\ 3 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} -4 \\ 7 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\begin{pmatrix} 1 \\ -3 \end{pmatrix}$

Version: 1724

$$v_1 = \begin{pmatrix} -2 \\ -1 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} -3 \\ 3 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} -4 \\ 7 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\begin{pmatrix} 1 \\ -3 \end{pmatrix}$

$$v_1 = \begin{pmatrix} -1 \\ 2 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} 4 \\ 4 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} -7 \\ -10 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: ${3 \choose 1}$

Version: 1989

$$v_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} -1 \\ 2 \end{pmatrix} (blue)$$

 $x = {-1 \choose 5}$ (position vector in Cartesian coordinates)

1st coordinate in ν_1 direction and 2nd in ν_2 direction: $\left(\begin{smallmatrix} -5\\ -2\end{smallmatrix} \right)$

Version: 2064

$$v_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} -4 \\ 4 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} -2 \\ 5 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\begin{pmatrix} -1 \\ -1 \end{pmatrix}$

Version: 2079

$$v_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} -3 \\ 0 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\begin{pmatrix} 4 \\ -6 \end{pmatrix}$

$$v_1 = \begin{pmatrix} -2 \\ -3 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} 0 \\ 7 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\left(\begin{array}{c}1\\-1\end{array}\right)$

Version: 2169

$$v_1 = \begin{pmatrix} -2 \\ -3 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} 0 \\ 7 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$

(3.) Given
$$x = \begin{pmatrix} 0 \\ 7 \end{pmatrix}$$
, find $[x]_B = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$

(4.) Given
$$[y]_B = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
, find $y = \begin{pmatrix} -3 \\ -1 \end{pmatrix}$

Version: 2211

$$v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$

$$v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} (blue)$$

$$x = \begin{pmatrix} 2 \\ 10 \end{pmatrix}$$
 (position vector in Cartesian coordinates)

Version: 2421

$$v_1 = \begin{pmatrix} 1 \\ -4 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix} (blue)$$

$$x = \begin{pmatrix} -4 \\ -5 \end{pmatrix}$$
 (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\binom{-1}{2}$

(3.) Given
$$x = \begin{pmatrix} -4 \\ -5 \end{pmatrix}$$
, find $[x]_B = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$

(4.) Given
$$[y]_B = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$
, find $y = \begin{pmatrix} -5 \\ 6 \end{pmatrix}$

Version: 2452

$$v_1 = \begin{pmatrix} -2 \\ 2 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix} (blue)$$

$$x = \begin{pmatrix} -8 \\ -1 \end{pmatrix}$$
(position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\begin{pmatrix} 2 \\ -2 \end{pmatrix}$

$$v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} (blue)$$

$$x = \begin{pmatrix} 0 \\ 4 \end{pmatrix}$$
 (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\left(\begin{array}{c} 4\\-4\end{array}\right)$

Version: 2602

$$v_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} 2 \\ 6 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\left(\begin{array}{c} -6 \\ 2 \end{array}\right)$

Version: 2750

$$v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} 1 \\ 3 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\binom{7}{2}$

Version: 2846

$$v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} -1 \\ 4 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} 4 \\ -6 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: ${-2 \choose 2}$

$$v_1 = \begin{pmatrix} 3 \\ -1 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} 1 \\ -3 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} -10 \\ 6 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\left(\begin{array}{c} 4 \\ -4 \end{array}\right)$

Version: 2915

$$v_1 = \begin{pmatrix} 3 \\ -3 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} -1 \\ -3 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\binom{-1}{2}$

Version: 2993

$$v_1 = \begin{pmatrix} -3 \\ 3 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} -4 \\ -3 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} -1 \\ -6 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$

Version: 3057

$$v_1 = \begin{pmatrix} -2 \\ -2 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} -3 \\ 2 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} 9 \\ 4 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\begin{pmatrix} -3\\1 \end{pmatrix}$

$$v_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\left(\begin{array}{c}2\\-5\end{array}\right)$

Version: 3115

$$v_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} 6 \\ -1 \end{pmatrix} (position vector in Cartesian coordinates)$

Version: 3154

$$v_1 = \begin{pmatrix} -2 \\ -4 \end{pmatrix} (red) \text{ and } v_2 = \begin{pmatrix} -1 \\ 2 \end{pmatrix} (blue)$$

 $x = \begin{pmatrix} 1 \\ 6 \end{pmatrix}$ (position vector in Cartesian coordinates)

1st coordinate in v_1 direction and 2nd in v_2 direction: $\begin{pmatrix} -1 \\ -1 \end{pmatrix}$