5.bu-6: Erigen values
\& Dynamical Systems
Math 220: Linear Algebra
A stretch of desert in Northwestern Mexico is populated mainly by two species of animals: coyotes and roadrunners. We wish to model the populations $c(t)$ and $r(t)$ of coyotes and roadrunners t years from now if the current populations c_{0} and r_{0} are known.

From this habitat, the following equations model the transformation of this system from one year to the next, from time t to time $t+1$.:

$$
\left\{\begin{array}{l}
c(t+1)=0.86 c(t)+0.08 r(t) \\
r(t+1)=-0.12 c(t)+1.14 r(t)
\end{array}\right.
$$

Write this as a matrix product $\vec{x}(t+i)=A \vec{x}(t)$

$$
\vec{X}(t+1)=\left[\begin{array}{c}
c(t+1) \\
r(t+1)
\end{array}\right]=\left[\begin{array}{cc}
0.86 & 0.08 \\
-0.12 & 1.14
\end{array}\right]\left[\begin{array}{l}
c(t) \\
r(t)
\end{array}\right]
$$

We call $\vec{x}(t)$ the state vector and $\vec{x}(0)$ the initial state vector This linear transformation is an example of a \qquad dynamical system
Suppose we begin with 100 coyotes and 300 road runners, find a close-form formula for $c(t)$ and $r(t)$.

$$
\begin{aligned}
& \text { explore: }\left[\begin{array}{cc}
0.86 & 0.08 \\
-0.12 & 1.14
\end{array}\right]\left[\begin{array}{c}
100 \\
300
\end{array}\right]=\left[\begin{array}{l}
110 \\
330
\end{array}\right]=1.1\left[\begin{array}{c}
100 \\
1
\end{array}\right] \\
& \text { so } \vec{x}(t)=A^{t} \vec{x}_{0} \mathscr{L}_{1} \\
& =1.1^{t}\left[\begin{array}{l}
100 \\
300
\end{array}\right]_{\text {Page } 1}
\end{aligned}
$$

and $c(t)=1,1,100$ and $r(t)=300 \cdot 1,1 t$.
5.406

54: Linear Transformations and Dynamical Systems
Suppose we have $c_{0}=200$ and $r_{0}=100$. Fard $x(E)$.

$$
\text { explore i }\left[\begin{array}{cc}
0.86 & 0.08 \\
-0.12 & 1.14
\end{array}\right]\left[\begin{array}{l}
200 \\
100
\end{array}\right]=\left[\begin{array}{c}
180 \\
90
\end{array}\right]=0.9\left[\begin{array}{c}
200 \\
100
\end{array}\right]
$$

$$
\text { so } \vec{x}(t) \leftarrow \Delta_{4} \leftarrow\left[\begin{array}{c}
200 \\
100
\end{array}\right]
$$

Suppose we have $c_{0}=r_{0}=1000$. Hint: Write \vec{x}_{0} in terms of the eigenbasis. Find $\vec{x}(t)$

$$
\left.\begin{array}{rl}
{\left[\begin{array}{l}
1000 \\
1000
\end{array}\right]} & =2\left[\begin{array}{l}
100 \\
300
\end{array}\right]+4\left[\begin{array}{l}
200 \\
200
\end{array}\right] \\
X(t) & =A\left[\begin{array}{l}
1000 \\
1000
\end{array}\right] \\
& =A_{2}^{t}\left(2 b_{2}+4 b_{2}\right) \\
& =2 A^{t} b_{1}+4 A^{t} b_{2} \\
& =2(1.1)^{t}[100]+4(0.9)^{t}[200] \\
300
\end{array}\right]
$$

Sketch a phase portrait to describe this system

rove: only the lIst quadrant makes sense in context.
$5.4-6$
534: Linear Transformations and Dynamical Systems
Here is another example.
Ex 1: Consider $A=\left[\begin{array}{ll}0.5 & 0.25 \\ 0.5 & 0.75\end{array}\right]$. Since the sum of each column is 1 , this linear transformation matrix is called a \qquad transition matrix.
a.) Find a closed-form expression for A^{t}. Hint: Since A is a transition matrix, one of its eigenvalues will be one.
(1) Find eigenvalues.

$$
\begin{aligned}
\text { eigenvalues. } & =\left|\begin{array}{cc}
5-\lambda & .25 \\
\text { solve } 0 & =75-\lambda
\end{array}\right| \\
& =\left(\frac{1}{2}-\lambda\right)\left(\frac{3}{4}-\lambda\right)-\frac{1}{8} \\
& =\lambda^{2}-\frac{5}{4} \lambda+\frac{1}{4}=\frac{1}{4}\left\langle 4 \lambda^{2}-5 \lambda+1\right\rangle
\end{aligned}
$$

(2) Find ergenvecs

$$
=\frac{1}{4}(\lambda-1)(4 \lambda-1)
$$

$$
\lambda=1 \%\left[\begin{array}{cc}
-.5 & .25 \\
.5 & -.25
\end{array}\right] \Rightarrow\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

$$
\lambda=1 \text { and } \lambda=\frac{1}{4}
$$

$$
\lambda=\frac{1}{4},\left[\begin{array}{cc}
.25 & 25 \\
.5 & , 5
\end{array}\right] \Rightarrow\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

b.) If $\vec{x}_{0}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, find $A^{t} \vec{x}_{0}$

$$
\operatorname{so} A=P D p^{-1} \quad w l
$$

$$
P=\left[\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right] \text { and } D=\left[\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{4}
\end{array}\right]
$$

$$
\lim _{t \rightarrow \infty}\left(\frac{1}{3}\left[\begin{array}{l}
1 \\
2
\end{array}\right]-\frac{2}{3}(\not 4)^{t}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
\frac{1}{3} \\
\frac{2}{3}
\end{array}\right]
$$

$$
\begin{aligned}
& A^{t}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=A^{t}\left(\frac{1}{3}\left[\begin{array}{l}
1 \\
2
\end{array}\right]-\frac{2}{3}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right\rangle \\
& \text { And } A^{t}=\left[\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 6 \\
0 & \left(\frac{1}{4}\right)
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
3 & 1
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{l}
1 \\
2
\end{array}\right]-\frac{2}{3}\left(\frac{1}{4}\right)^{t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right] \\
& \begin{array}{l}
=\frac{1}{3}\left[\begin{array}{ll}
1+2\left(\frac{1}{4}\right)^{t} & 1-\left(\frac{1}{4}\right)^{t} \\
2 \sim 2\left(\frac{1}{4}\right)^{t} & 2+\left(\frac{1}{4}\right)^{t}
\end{array}\right]
\end{array} \\
& \text { c.) Find the steady-state or equilibrium vector } \vec{x}_{\text {eq }}=\lim _{t \rightarrow \infty} A^{t} \vec{x}_{0}
\end{aligned}
$$

5.4-6: Eigenvalues and Dynamical Systems

Complex Eigenvalues
Up to this point, we have only discussed real eigenvalues and real-valued vectors (including eigenvectors). But the linear algebra world we have established works over complex numbers of the form $z=a+b i$ where $i^{2}=-1$.

Ex 3: Find the eigenvalues and a basis for each eigenspace in \mathbb{C}^{n} of the matrix $\left[\begin{array}{cc}5 & -2 \\ 1 & 3\end{array}\right]$. Then write the eigenvectors \vec{x} in the form $\operatorname{Re} \bar{x}+i \operatorname{Im} \bar{x}$
si gen valuers.
Eigurverctors.

$$
\text { solve } \begin{aligned}
0 & =\left|\begin{array}{cc}
5-\lambda & -2 \\
1 & 3-\lambda
\end{array}\right| \\
& =(5-\lambda)(3-\lambda)+2 \\
& =\lambda^{2}-8 \lambda+17 \\
\Rightarrow \lambda & =\frac{8 \pm \sqrt{64-4(1)(77)}}{201)} \\
& =4 \pm i
\end{aligned}
$$

$$
\begin{aligned}
A-(4+i) I & =\left[\begin{array}{cc}
1-i & -2 \\
1 & -1-i
\end{array}\right] R_{1} \leftrightarrow R_{2} \\
& \cdots\left[\begin{array}{cc}
1 & -1-i \\
1-i & -2
\end{array}\right]_{R_{2}-}
\end{aligned}
$$

$$
\sim\left[\begin{array}{cc}
1 & -1-i \\
0 & 0
\end{array}\right]
$$

$$
(1-i) R_{1}-a R_{2}
$$

so the list eigerver is $\vec{v}_{1}=\left[\begin{array}{c}1+i \\ 1\end{array}\right]$
conclusion: The eigervecs \vec{v}_{1} \& \vec{v}_{2} are of the
form

$$
\underset{\substack{x \\
\operatorname{Re}_{\beta} \vec{x}}}{\left[\begin{array}{l}
i \\
1
\end{array}\right] \pm i}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Notice that a real-valued matrix can have complex eigenvalues and eigenvectors. Notice further that the eigenvalues and vectors come in conjugate pairs.
5.4-6: Eigenvalues and Dynamical Systems

Ex 4: Next we need to unpack the rotation-scaling matrix $C=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$.
a.) Find the eigenvalues of C.

$$
\text { solve } \begin{aligned}
\Delta & =\left|\begin{array}{cc}
a-\lambda & -b \\
b & a-\lambda
\end{array}\right| \\
& =(a-\lambda)^{2}+b^{2} \\
& =\lambda^{2}-2 a \lambda+\left\langle a^{2}+b^{2}\right\rangle
\end{aligned}
$$

$$
\text { And } \begin{aligned}
x & =\frac{2 a \pm \sqrt{4 a^{2}-4(1)\left(a^{2}+b^{2}\right.}}{2(1)} \\
& =\frac{2 a \pm \sqrt{-4 b^{2}}}{2} \\
& =a \pm \mid a a^{2}=a \pm b i \\
& i
\end{aligned}
$$

positive
b.) Let's call $r=|\lambda|=\sqrt{a^{2}+b^{2}}$. Then using the picture below, find $\frac{a}{r}$ and $\frac{b}{r}$ in terms of φ.

$$
\begin{aligned}
& \frac{a}{r}=\cos \varphi \\
& \frac{b}{r}=\sin \varphi
\end{aligned}
$$

Notice These formvias assume
 a positive b because of $1 b 1$ in derivation.
So $C=r\left[\begin{array}{cc}a / r & -b / r \\ b / r & a / r\end{array}\right]=\left[\begin{array}{ll}r & 0 \\ 0 & r\end{array}\right]\left[\begin{array}{cc}\cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi\end{array}\right]$
where $\left[\begin{array}{ll}n & 0 \\ 0 & r\end{array}\right]$ is a scaling matrix and $\left[\begin{array}{ll}\cos \psi & -\sin ^{4} \varphi \\ \sin \psi & \cos \psi\end{array}\right]$ is a rotation matrix. Ex 5: The matrix $\left[\begin{array}{cc}-5 & -5 \\ 5 & -5\end{array}\right]$ is a rotation-scaling matrix. Find its eigenvalues, scaling factor, and the angle of rotation φ.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
a & - \\
b & a
\end{array}\right]=\left[\begin{array}{cc}
-5 & -5 \\
5 & -5
\end{array}\right]=5 \sqrt{2}\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]} \\
& \text { so } \lambda=a \pm b i=-5 \pm 5 i
\end{aligned}
$$

the scaling factor is $|\lambda|=\sqrt{25+25}=5 \sqrt{2}$
$\cos \varphi=-\frac{1}{\sqrt{2}}$ and $\sin \varphi=\operatorname{Page}_{1 / \sqrt{2} 6}$ so in Quadrant 2 and $\varphi=\frac{3 \pi}{4}$
5.4-6: Eigenvalues and Dynamical Systems

This brings us back to the idea of matrix factorization. Recall that if A had real eigenvalues and enough linearly independent eigenvectors, then $A=P D P^{-1}$ where the columns of P were the eigenvectors and D was a diagonal matrix whose diagonal entries were the corresponding eigenvalues.

Similarly, let A be a real $2 x 2$ matrix with a complex eigenvalue $\lambda=a-i b \quad(b \neq 0)$ and an associated eigenvector \bar{v} in \mathbb{C}^{2}. Then $A=P C P^{-1}$ where $P=\left[\begin{array}{ll}\operatorname{Re} \vec{v} \quad \operatorname{Im} \vec{v}\end{array}\right]$ and C is the rotation-scaling matrix $C=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$.

Ex 6: Find an invertible matrix P and a matrix C of the form $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ such that the matrix $\left[\begin{array}{cc}5 & -2 \\ 1 & 3\end{array}\right]$ has the form $A=P C P^{-1}$

eigenvalues $4 \pm i$. $4-i$ is of the form a-bi w/ $a=4$ and $b=1$.
ant the corresponding eigenvec is $\left[\begin{array}{l}1 \\ 1\end{array}\right]+i\left[\begin{array}{c}-1 \\ 0\end{array}\right]$
thus $A=P C P^{-1}$ where

$$
P=\left[\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right] \text { and } C=\left[\begin{array}{cc}
4 & -1 \\
1 & 4
\end{array}\right]
$$

5.4-6: Eigenvalues and Dynamical Systems

Trajectories of Dynamical Systems
When we began this lesson, we used a predator-prey example involving coyotes and road runners. We ended that example with a phase portrait that helped us understand the trajectories based upon various initial state vectors.

Let's begin by trying to understand how these trajectories work.
Ex 7: Suppose $A=\left[\begin{array}{cc}0.8 & 0 \\ 0 & 0.64\end{array}\right]$ and $\vec{x}_{0}=\left[\begin{array}{l}100 \\ 100\end{array}\right]$, find and plot $\vec{x}(1), \vec{x}(2), \vec{x}(3), \ldots, \vec{x}(10)$

$$
\vec{x}(t)\left[\begin{array}{l}
20.1 \\
4.4
\end{array}\right]\left[\begin{array}{l}
16.8 \\
2.8
\end{array}\right]\left[\begin{array}{l}
13.4 \\
1.8
\end{array}\right]\left[\begin{array}{l}
10.7 \\
1.2
\end{array}\right]\left[\begin{array}{l}
80 \\
64
\end{array}\right]
$$

Page 7 of 12

5.4-6: Eigenvalues and Dynamical Systems

Ex 7: (revisited) $A=\left[\begin{array}{cc}0.8 & 0 \\ 0 & 0.64\end{array}\right]$, has eigenvalues $\lambda_{1}=0.8$ and $\lambda_{2}=0.64$ with corresponding eigenvectors $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.

So if $\vec{x}_{0}=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}$, then $\vec{x}_{k}=c_{1}(0.8)^{k}\left[\begin{array}{l}1 \\ 0\end{array}\right]+c_{2}(0.64)^{k}\left[\begin{array}{l}0 \\ 1\end{array}\right]$

FIGURE 1 The origin as an attractor.
5.4-6: Eigenvalues and Dynamical Systems

Ex 8: Suppose $A=\left[\begin{array}{cc}1.44 & 0 \\ 0 & 1.2\end{array}\right]$. What are the eigenvalues and eigenvectors? eígen values 1. eq xxxxxxxxxx and 1.2
eigen vecs $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$

FIGURE 2 The origin as a repeller.
Ex 9: Suppose $A=\left[\begin{array}{cc}2 & 0 \\ 0 & 0.5\end{array}\right]$. Here is a phase portrait for it.

FIGURE 3 The origin as a saddle point.
x_{2} direction.
5.4-6: Eigenvalues and Dynamical Systems

Question: In the previous examples, we have focused on diagonal matrices? Is this reasonable? Is it overly simplistic? Explain.

If there are enough eigenuecs; then a dynamical system is diagonalizeable. we con think of $p \& p^{-1}$ as giveng a change of basis to ave where the diaconal matrix
Ex 10: Show that the origin is a saddle point for the solutions of $\vec{x}_{k+1}=A \vec{x}_{k}$ where represents

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
1.25 & -0.75 \\
-0.75 & 1.25
\end{array}\right] \\
& \text { solve } 0=\left(\frac{5}{4}-\lambda\right)\left(\frac{5}{4}-\lambda\right)-\frac{9}{16} \\
&=\lambda^{2}-\frac{5}{2} \lambda+1 \\
& \Rightarrow 0=2 \lambda^{2}-5 \lambda+2 \\
& \lambda=\frac{5 \pm \sqrt{25-4(\lambda)(2)}}{2(2)} \\
&=20 R \frac{1}{2} \\
& A-2 I=\left[\begin{array}{ll}
-.75-.75 \\
-.75 & -.75
\end{array}\right]
\end{aligned}
$$

so the eigenvec is $\left[\begin{array}{c}1 \\ -1\end{array}\right]$

$$
A-\frac{1}{2} I=\left[\begin{array}{cc}
.75 & -.75 \\
-.75 & .75
\end{array}\right]
$$

so the liger ven is $\left[\begin{array}{l}1 \\ 1\end{array}\right]$
5.4-6: Eigenvalues and Dynamical Systems

Phase portraits get more interesting with complex eigenvalues

Ex 11: Consider the dynamical system and sketch the trajectory of $\vec{x}_{k+1}=A \vec{x}_{k}$
where $A=\left[\begin{array}{ll}3 & -5 \\ 1 & -1\end{array}\right]$ and $\vec{x}_{0}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
solve $0=(3-\lambda)(-1-\lambda)+5$

$$
=\lambda^{2}-2 \lambda+2
$$

$$
\Rightarrow \lambda=\frac{2 \pm \sqrt{4-4(1)(2)}}{2(1)}
$$

$$
=\frac{2 \pm 2 i}{2}
$$

$$
=1 \pm i \quad \text { (Note: }|x|=\sqrt{2}\rangle
$$

$$
A-(1-i) I=\left[\begin{array}{cc}
2+i & -5 \\
1 & -2+i
\end{array}\right]
$$

$R_{1} \Leftrightarrow R_{2}$

$$
\sim\left[\begin{array}{cc}
1 & -2+i \\
2+i & -5
\end{array}\right]
$$

$$
\text { is }\left[\begin{array}{c}
2-i \\
1
\end{array}\right]
$$

$$
\text { or }\left[\begin{array}{c}
2 \\
1
\end{array}\right]+i\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
$$

$$
\text { so } A=\left[\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right]
$$

$$
c \quad p^{-1}
$$

$$
c=\sqrt{2}\left[\begin{array}{cc}
\cos \frac{\pi}{4} & -\sin \frac{\pi}{4} \\
\sin \frac{\pi}{4} & \cos \frac{\pi}{4}
\end{array}\right]
$$

Now to sketch the trajectory.
(1) Find $x_{0}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ in terms of the $R e \vec{x}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and In $\vec{x}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$ basis. $p^{-1} \vec{x}_{0}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$
(2) What does the rotation do?

$$
\left[\begin{array}{cc}
\cos \frac{\pi}{4} t & -\sin \frac{\pi}{4} t \\
\sin \frac{\pi}{4} t & \cos \frac{\pi}{4} t
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

It starts ec $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and rotates $45^{\circ} \mathrm{cm}$ w each step.
(3) Then we go back to the original coordinates

$$
\left[\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
\cos \frac{\pi}{4} t & -\sin \frac{\pi}{4} t \\
\sin \frac{\pi}{4} t & \cos \frac{\pi}{4} t
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

This puts us on ar
elliptical path.
(4) Finally, we add the scaling factor which causes the trajectory
 to spiral outs.

$$
\begin{aligned}
\vec{x}(t) & =(\sqrt{2})^{2}\left[\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right] \cdot R \\
& \rightarrow\left[\begin{array}{cc}
\cos \frac{\pi}{4} t & -\sin \frac{\pi}{4} t \\
\sin \frac{\pi}{4} t & \cos \frac{\pi}{4} t
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{aligned}
$$

