1.5: Solution Sets of Linear Systems

Math 220: Linear Algebra

A system of linear equations is called \qquad homogeneous if it can be written as $A \mathbf{x}=0$ Such a system always has the \qquad trivial solution \qquad i

The important question is whether or not there is a \qquad Now - trivial solution to a homogeneous system.

Since there is always a trivial solution, there is oddly a nontrivial solution if and only if there is at least one \qquad free \qquad Variable .

Ex 1: Determine whether the following has a non-trivial solution, and if so, describe the solution set.

$$
\begin{array}{r}
\begin{array}{r}
2 x_{1}-5 x_{2}+8 x_{3}=0 \\
-2 x_{1}-7 x_{2}+x_{3}=0 \\
4 x_{1}+2 x_{2}+7 x_{3}=0
\end{array} \\
\sim\left[\begin{array}{cccc}
2 & -5 & 8 & 0 \\
-2 & -7 & 1 & 0 \\
4 & 2 & 7 & 0
\end{array}\right] \\
\sim\left[\begin{array}{cccc}
1 & 0 & \frac{17}{8} & 0 \\
0 & 1 & -3 / 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \begin{array}{l}
x_{1}=-\frac{17}{8} x_{3} \\
x_{2}=\frac{3}{4} x_{3} \\
x_{3}=x_{3}
\end{array} \\
\text { free variable and so non -trivial solution } \\
\text { The solvions are vectors of the form } \vec{X}=x_{3}\left[\begin{array}{c}
-17 / 8 \\
3 / 4 \\
1
\end{array}\right]
\end{array}
$$

Ex 2: Describe all the solutions of the homogeneous "system".

$$
\begin{aligned}
& 3 x_{1}-4 x_{2}+5 x_{3}=0 \Rightarrow\left[\begin{array}{llll}
3 & -4 & 5 & 0
\end{array}\right] \\
& \sim\left[\begin{array}{llll}
1 & -\frac{4}{3} & \frac{5}{3} & 0
\end{array}\right] \\
& x_{1}=\frac{4}{3} x_{2}-\frac{5}{3} x_{3} \quad[4] \quad\left[\quad x_{1}+\quad \operatorname{span}\left\{\pi_{i}, \vec{v}\right\}\right. \\
& x_{2}=x_{2} \text { (free) } \Rightarrow \vec{x}=x_{2}\left[\begin{array}{c}
4 / 3 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-5 / 3 \\
0 \\
1
\end{array}\right]^{x_{1}} \\
& x_{3}=x_{3} \text { (free) } \\
& \text { The solvitions form } \\
& \text { a lave. The plant } \\
& \text { represents the }
\end{aligned}
$$

1.5: Solution Sets of Linear Systems

The previous example demonstrates how we can write solutions in Parametric Vector Form. $\quad \mathbf{x}=s \mathbf{u}+t \mathbf{v} \quad(s, t \in \mathbb{R})$
result of $E x 1: \vec{x}=s \vec{i}$ where $s=x_{3}$ and $\vec{\lambda}=\left[\begin{array}{c}-17 / 8 \\ 3 / 4 \\ 1\end{array}\right]$ result e of $E_{x 2}: \vec{x}=s \vec{u}+t \vec{v}$ where $s=x_{2}, t=x_{3,1}, \vec{u}=\left[\begin{array}{c}4 / 3 \\ 1 \\ 0\end{array}\right]$ and $\vec{v}=$
Solutions of Nonhomogeneous Systems

Ex 3: Describe all solutions of $A \mathbf{x}=\mathbf{b} . \quad A=\left[\begin{array}{ccc}1 & 3 & 1 \\ -4 & -9 & 2 \\ 0 & -3 & -6\end{array}\right]$ and $b=\left[\begin{array}{c}1 \\ -1 \\ -3\end{array}\right]$
$\Rightarrow\left[\begin{array}{cccc}1 & 3 & 1 & 1 \\ -4 & -4 & 2 & -1 \\ 0 & -3 & -6 & -3\end{array}\right] \sim\left[\begin{array}{cccc}1 & 0 & -5 & -2 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$
$\Rightarrow \begin{aligned} x_{1} & =-2+5 x_{3} \\ x_{2} & =1-2 x_{3}\end{aligned}$
$x_{2}=1-2 x_{3}$
$x_{3}=x_{3}$ (free)
$\Rightarrow \vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}5 \\ -2 \\ 1\end{array}\right]$
$\left\{\begin{array}{l}\vec{x}=\vec{p}+t \vec{v} \\ \text { where } \vec{p}=\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right] \\ \text { and } \vec{v}=\left[\begin{array}{c}5 \\ -2 \\ 1\end{array}\right]\end{array}\right.$

To visualize the solution set of $A \mathbf{x}=\mathbf{b}$ geometrically, we can think of vector addition as a \qquad translation

1.5: Solution Sets of Linear Systems

The solution set of $A \mathbf{x}=\mathbf{b}$ is a line through \mathbf{p} \qquad to the solution set of \qquad $A \vec{x}=\overrightarrow{0}$.

THEOREM 6

Suppose the equation $A \mathbf{x}=\mathbf{b}$ is consistent for some given \mathbf{b}_{1} and let \mathbf{p} be a solution. Then the solution set of $A \bar{\Sigma}=b$ is the set of all vectors of the form $\mathbf{w}=\mathbf{p}+\mathbf{w}_{h}$ where \mathbf{w}_{h} is any solution of the homogeneous equation $A \mathbf{x}=0$.

claim:
$\overline{\text { so that }} A \mathbf{p}=\mathbf{b}$. Let $\mathbf{v}_{\boldsymbol{h}}$ be any solution to the homogeneous equation $A \mathbf{x}=\mathbf{0}$, and let $\mathbf{w}=\mathbf{p}+\mathbf{v}_{h}$, Show that \mathbf{w} is a solution to $A \mathbf{x}=\mathbf{b}$. proof.

$$
\begin{aligned}
& \overrightarrow{\text { Let } A, \vec{p}, \vec{b}, \text { and } \vec{v}_{n} \text { be giver as above }} \begin{aligned}
& \Rightarrow A \vec{w}=A\left(\vec{p}+\vec{v}_{n}\right) \\
&=A \vec{p}+A \vec{v}_{h} \\
&=\vec{b}+\overrightarrow{0} \\
&=\vec{b} \\
& \therefore \vec{w} \text { is a solution to } A \vec{x}=\vec{b}
\end{aligned}
\end{aligned}
$$

1.5: Solution Sets of Linear Systems

Writing a Solution Set (of a Consistent System) in Parametric Vector Form

1. Row reduce the augmented matrix to reduced echelon form.
2. Express each basic variable in terms of any free variables appearing in an equation.
3. Write a typical solution x as a vector whose entries depend on the free variables, if any.
4. Decompose x into a linear combination of vectors (with numeric entries) using the free variables as parameters.

Ex 4: Each of the following equations determines a plane in \mathbb{R}^{3}. Do the two planes intersect? If so, describe their intersection.

$$
\begin{aligned}
& x_{1}+4 x_{2}-5 x_{3}=0 \\
& \Rightarrow\left[\begin{array}{cccc}
1 & 4 & -5 & 0 \\
2 & -1 & 8 & 9
\end{array}\right] \sim\left[\begin{array}{cccc}
2 x_{1}-x_{2}+8 x_{3}=9 \\
0 & 0 & 3 & 4 \\
0 & 1 & -2 & -1
\end{array}\right] \text { The system is } \\
& \text { places intersect. } \\
& x_{1}=4-3 x_{3} \\
& x_{2}=-1+2 x_{3} \\
& x_{3}=x_{3} \text { (free) } \\
& \text { parallel to } \\
& \langle-3,2,1\rangle \\
& \text { Thing intersect along } \\
& \text { live parameterized above. }
\end{aligned}
$$

Ex 5: Write the general solution of $10 x_{1}-3 x_{2}-2 x_{3}=7$ in parametric vector form,

$$
\begin{aligned}
& x_{1}=0.7 \pm 0.3 x_{2} \pm 0.2 x_{3} \\
& x_{2}=x_{2} \text { (free) } \Rightarrow \vec{x}=\left[\begin{array}{c}
0.7 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
\pm 0.3 \\
1
\end{array}\right. \\
& x_{3}=x_{3} \text { (free) }
\end{aligned}
$$

Correction: All signs in the handwritten solution should be positive.

1.5: Solution Sets of Linear Systems

1.6 -Applications (read/review Network Flow as well - pages 53-54)

Balancing Chemical Equations

Chemical equations describe the quantities of substances consumed and produced by chemical reactions. For instance, when propane gas burns, the propane ($\mathrm{C}_{3} \mathrm{H}_{8}$) combines with oxygen $\left(\mathrm{O}_{2}\right)$ to form carbon dioxide $\left(\mathrm{CO}_{2}\right)$ and water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, according to an equation of the form

$$
\begin{aligned}
& \left(x_{1}\right) \mathrm{C}_{3} \mathrm{H}_{8}+\left(x_{2}\right) \mathrm{O}_{2} \rightarrow\left(x_{3}\right) \mathrm{CO}_{2}+\left(x_{4}\right) \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{C}_{3} \mathrm{H}_{8}:\left[\begin{array}{l}
3 \\
8 \\
0
\end{array}\right], \mathrm{O}_{2}:\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right], \mathrm{CO}_{2}:\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right], \mathrm{H}_{2} \mathrm{O}:\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right] \begin{array}{l}
\leftarrow \text { Carbon } \\
\leftarrow \text { Hydrogen } \\
\leftarrow \text { Oxygen }
\end{array} \\
& \Rightarrow x_{1}\left[\begin{array}{l}
3 \\
8 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]=x_{3}\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right] \\
& \Rightarrow x_{1}\left[\begin{array}{l}
3 \\
8 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]-x_{3}\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]-x_{4}\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{rrrrr}
3 & 0 & -1 & 0 & 0 \\
8 & 0 & 0 & -2 & 0 \\
0 & 2 & -2 & -1 & 0
\end{array}\right] \sim\left[\begin{array}{lllll}
1 & 0 & 0 & -1 / 4 & 0 \\
0 & 1 & 0 & -5 / 4 & 0 \\
0 & 0 & 1 & -3 / 4 & 0
\end{array}\right] \\
& x_{1}=\frac{1}{4} x_{4} \\
& x_{2}=\frac{5}{4} x_{4} \\
& \Rightarrow \stackrel{\rightharpoonup}{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{4}\left[\begin{array}{c}
1 / 4 \\
5 / 4 \\
3 / 4 \\
1
\end{array}\right] \\
& x_{y}=x_{4} \text { (free) } \\
& \text { This means } 1 \mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

