6.2: Orthogonal Sets
Math 220: Linear Algebra
		
6.2: Orthogonal Sets


A set of vectors  is called an __________________ _______ if each pair of distinct vectors from the set is orthogonal.  That is, ____________ when .
[image: ]Determine whether the set of vectors is orthogonal.
a) 





[image: ]
b) 



[image: ]
Proof:





[image: ]
[image: ]

[image: ] The vector  is in the subspace W with orthogonal basis from Ex 1b). Express v as a linear combination of the orthogonal basis.










[image: ]An Orthogonal Projection










[image: ]
[image: ]
 

Then write  as a sum of two orthogonal vectors.  Also, observe geometrically.


[image: C:\Users\awarnock\Documents\My Documents\Previous Classes\2013-2014\2013.4.Fall\Math& 151\GraphGrid1.JPG]






Find the distance from the vector  to the line through  (from Ex 3).




[image: ]Notice that the orthogonal projection formula matches the weights of the orthogonal basis terms in theorem 5.  Theorem 5 decomposes a vector into a sum of orthogonal projections onto one-dimensional subspaces (lines).



In , if we have an orthogonal basis 
then any  can be written as
[image: ]

In physics we use this to decompose force on an object.
[image: ]


A set of vectors  is called an _______________________ _______ if it is an orthogonal set of ______________  _______________.  If W is spanned by this set, then the set is an _____________________________ _______________ for W.

The simplest orthonormal basis for is {                       }.  
Any nonempty subset of this standard basis is orthonormal as well.  

[image: ]Determine whether the set of vectors is orthonormal.  Is it an orthonormal basis for ?







[image: ]
Proof:







[image: ]



 Let  and .  Verify that 








An _______________________  ________________ is a square invertible matrix , such that .  By theorem 6, it has orthonormal columns.
The matrix formed from the vectors from Ex 5 is an example.

[image: ]
Practice Problem
1. 

 Let U and x be as in example 6, and let .  Verify that 
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Theorem 4
If S ={uy,..., up} is an orthogonal set of nonzero vectors in R, then S
linearly independent and hence is a basis for the subspace spanned by S.
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Definition
An orthogonal basis for a subspace W of R is a basis for W that is also an
orthogonal set.
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Theorem 5
Let {ul, ey u‘,} be an orthogonal basis for a subspace W of R". For each

y in W, the weights in the linear combination

y=cw+---+ou

are given by
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1
Compute the orthogonal projection of [7] onto the Imelnrougn[ 2] and the origin
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§, = projection onto u,
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Theorem 6
Anm x n matrix U has orthonormal columns if and only if UTU = I.
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Theorem 7
Let Ube an m x n matrix with orthonormal columns, and let x and y be in
R™. Then

a [[Ux[| = [Ix]|

b (Ux)- (Uy) =x-y

c. (Ux)-(Uy) =0 ifandonlyifx-y = 0
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