Math 220
4.5: Dimension and Rank
Questions for flipped class
Important terms

Dimension




Rank


Caution: Question 4.5.3 is asking for the null space.



For everyone
(4.5.2) 
Determine the dimensions of Nul A, Col A, and Row A for the matrices shown.
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(4.5.1) 
Find a basis and state the dimension of the subspace
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Plug and chug

(4.5.3)
Find a basis and state the dimension of the subspace
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(4.5.4)
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(4.5.8)   
If A is a 6x8 matrix, what is the smallest possible dimension of Nul A?  Why?



Redundant redundant question
(4.5.5)  
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Your daily dose of theory
(4.5.6)
[image: ]


(4.5.7 theory question) Prove the Basis Theorem which states: Let V be a p-dimensional vector space .  Any linearly independent set of exactly p elements in V is automatically a basis for V.  Any set of exactly p elements that spans V is automatically a basis for V.


(4.5.1 solution)
[image: ]


(4.5.2 solution)
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(4.5.3 solution)
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(4.5.4 solution)
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(4.5.5 solution)
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(4.5.6 solution)
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(4.5.7 theory question) 
[image: ]
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Let B be the basis of [P; consisting of the Hermite polyno-
mials in  @sa  ,and let p(t) = 7 — 12t — 81> + 1217,
Find the coordinate vector of p relative to B.
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(T/F) The number of pivot columns of a matrix equals the
dimension of its column space.

. (T/F) The number of variables in the equation Ax = 0 equals

the nullity A.

. (T/F) A plane in R? is a two-dimensional subspace of R*.

(T/F) The dimension of the vector space Py is 4.

(T/F) The dimensions of the row space and the column space
of A are the same, even if A is not square.

(T/F) If B is any echelon form of A, then the pivot columns.
of B form a basis for the column space of A.

(T/F) The nullty of A is the number of columns of A that are
not pivot columns.

(T/F) If a set {vi....... v, } spans a finite-dimensional vector
space V and if 7 is a set of more than p vectors in V, then T
i linearly dependent.
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14, The matrix A is in echelon form. There are three pivor columas, so the dimension of Col A is 3. There are
three columns withou pivos, o the equation Ax = 0 has three free variables. Thus the dimension of
NulAdis3.
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21, The matrix whose columns are the coordinate vectors of the Hermite polynomils relative to the standard
basis (1,,,0) of By is
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“This matrix has 4 pivors,so s columns are lincarly independent, Since their coordinate vectors form a.
Vinearly independent se,the Hermite polynormials themselves are inearly independent in 2. Since there
are four Hemite poynomials and dim 7= 4, the Basis Theorem states that the Hermite polynomials
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dimension of its column space.  Tyye
(T/F) The number of variables in the cquation Ax = 0 cquals
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(T/F) The dimension of the vector space Py is 4. False - 5
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(T/F) The nullity of A s the number of columrie s}  Shat re:
not pivot columns.  True

(T/F) If a set {vi....... v, } spans a finite-dimensional vector
space V and if 7 is a set of more than p vectors in V, then T

is linearly dependent.  Trye - too many vectors
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7. {(@.b.c)ia—3b+c=0b-2c=02b—c=0}
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The first four Hermite polynomials are 1, 21, —2 + 417, and
~121 + 8. These polynomials arise naturally in the study
of certain important differential equations in mathematical
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physics.” Show that the first four Hermite polynomials form
a basis of Ps.




