Math 220
4.3: Linearly Independent Sets; Bases
Questions for flipped class
Key Terms:
A base satisfies what two conditions:




Monday warm-ups

(4.3.1) 
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Note: An example of a row vectors is: .  Notice that we use parenthesis instead of brackets and include commas between the entries.


(4.3.2) 
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Note: “Bases” is the plural of “basis.”
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More Practice is Recommended 
(4.3.3)
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(4.3.4)
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Theory Questions
(4.3.5)  
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(4.3.6)
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 (4.3.1 solution)
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 (4.3.2 solution)
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(4.3.3 solution)
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(4.3.4 solution)
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(4.3.5 solution)
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(4.3.6 solution)
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find a basis for the space spanned by the given
VeClors, vi. ... . vs.
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4 1 7
19. Let vi=| -3, vo=| 9[ va=|11[ and H =
7 -2 6

Span {vi, v, vs}. It can be verified that 4v, + 5v2 — 3v3 = 0.
Use this information to find a basis for H . There is more than
one answer.
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3.

Suppose R* = Span {v,
is a basis for R*.

va}. Explain why {vi.....va}

Let B = {vi.....v} be a lincarly independent sct in R"
‘Explain why B must be a basis for R”.
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21.
2.

27.

29.

(T/F) A single vector by itself is linearly dependent.

(T/F) A linearly independent set in a subspace H is a basis
for H.

(T/F)If H = Span {b.
for H

L then {b......b,} is a basis

(T/F) If a finite set § of nonzero vectors spans a vector space
¥, then some subset of S is a basis for V.

(T/F) The columns of an invertible 7 x n matrix form a basis
for R".

(T/F) A basis is a lincarly independent set that is as large as
possible.

(T/F) A basis is a spanning set that is as large as possible.

(T/F) The standard method for producing a
Nul A, described in Section 4.2, sometimes
a basis for Nul A.

(T/F) In some cases, the linear dependence relations among
the columns of a matrix can be affected by certain elementary
row operations on the matrix.
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13. Since B is a row echelon form of 4, we see that the first and second columns of A4 are its pivot columns.
Thus a basis for Col 4 is

2] 4
2,/-6
EIR]

To find a basis for Nul 4, we find the general solution of A4x = 0 in terms of the free variables:
X ==6%,—5x,, X =(-5/2)x; — (3/2)x,, with x; and x, free. So

5 -6 -5
I e A
x 17 ol
X 0 1
and a basis for Nul 4 is
][ -5
-5/2| | =312
1’ o

0 1
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3. Consider the matrix whose columns are the given set of vectors. The reduced echelon form of this matrix
is
1 3 3 10 9/2]
0 2 -5(~[0 1 -5/2
-2 4 1] (00 0

50 the matrix has only two pivot positions. Thus its columns do not form a basis for R’; the set of vectors
is neither linearly independent nor does it span R,
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4. Consider the matrix whose columns are the given set of vectors. The reduced echelon form of this
‘matrix is

2 1 -7 100
-2 3 5[~/0 10
1 2 4]0 01

so the matrix has three pivot positions. Thus its columns form a basis for .
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5. Since the zero vector is a member of the given set of vectors, the set cannot be linearly independent and
thus cannot be a basis for R’. Now consider the matrix whose columns are the given set of vectors. The
reduced echelon form of this matrix is

1 -2 0 0 100 0
-3 9 0 -3/~[0 1 00
0 00 5//000 1

5o the matrix has a pivot in each row. Thus the given set of vectors spans F.’.
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6. Consider the matrix whose columns are the given set of vectors. Since the matrix cannot have a pivot in
cach row, its columns cannot span R’; thus the given set of vectors is not a basis for R, The reduced
echelon form of the matrix s

1 4710
2 -5|~[0 1
-3 6] [0 O

so the matrix has a pivot in each column. Thus the given set of vectors is linearly independent.
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15. This problem is equivalent to finding a basis for Col 4, where A=[v, v, Vs Vi

reduced echelon form of 4 is

1
0
-3
2

0 -3
1 -4
2 1
-3 6

1

-3
-8

7

2
1
-6
9

0

o~ o

0

-3
-4
0
0

0
0
1
0

vs]. Since the

we see that the first, second, and fourth columns of 4 are its pivot columns. Thus a basis for the space
spanned by the given vectors is

1

0

1
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19. Since 4v, +5v, ~3v; =0, we see that each of the vectors is a lincar combination of the others, Thus the
sets {(¥),V,), {3}, and {v,,v;} all span H. Since we may confirm that none of the three vectors is
a multiple of any of the others, the sels {v,,V,}, {v;,v3}, and {v,,v,} are linearly independent and thus
each forms a basis for H.
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L Let A=[v, v, v; v,]. Then A is square and its columns span R* since R*=Span{v;,v,,v;,v,}.
- Soits columns are linearly independent by the Invertible Matrix Theorem; and {v,,V,,¥s,v,} is a basis
for RY,

Let A=[v, ... v,]. Then is squarc and its columns are lincarly independent, so its columns span
%" by the Invertible Matrix Theorem. Thus {V,,...,V,} is  basis for K.
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21. (T/F) A single vector by itself is linearly dependent. False unless it is the 0 vec

22. (T/F) A linearly independent set in a subspace H is a basis
for H. False - the set must also span H

23. (T/F)If H = Spant{by,....b,}, then {by, ..., b} is a basis
for H. False - the set must also be linearly independent

24. (T/F) If a finite set S of nonzero vectors spans a vector space
V', then some subset of S is a basis for V. True.

25. (T/F) The columns of an invertible n x n matrix form a basis
for R”.  True

26. (T/F) A basis is a linearly independent set that is as large as
possible. Tyye

27. (T/F) A basis is a spanning set that is as large as possible. False. We can always

add to spanning sets.
28. (T/F) The standard method for producing a spanning set for

Nul A, described in Section 4.2, sometimes fails to produce
a basis for Nul A.

True - If Nul A = {0}, then there is no basis.

29. (T/F) In some cases, the linear dependence relations among
the columns of a matrix can be affected by certain elementary
row operations on the matrix. False - Row ops

are our friends
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assume that A is row equivalent to B. Find
bases for Nul A, Col A. and Row A.
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In Exercises 13 and 14, assume that A is row equivalent to B. Find
bases for Nul 4, Col 4, and Row A.

-2 4 -2 -4 1065
B.4=| 2 -6 -3 1[B=|02 5 3
-3 8 2 -3 00 0 0




image3.wmf
(

)

1

1,2,3,4

r

=

v


oleObject1.bin

image4.png
Determine which sets are bases for R*. Of the sets.
that are not bases, determine which ones are linearly independent
and which ones span R Justify your answers.




