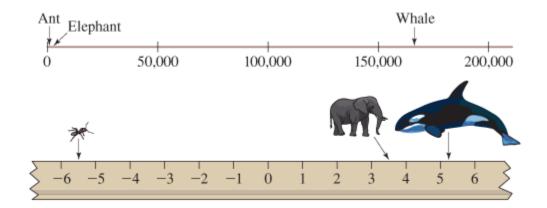
4.7 – Logarithmic Scales

When physical quantities have a very large variance, it can be useful to take the logarithm first, so that the numbers become more manageable. This is called a logarithmic scale – where numbers are are represented by their logarithms.

For example, if we needed to discuss the weights of an ant, elephant, and whale:

Animal	W (kg)	$\log W$
Ant	0.000003	-5.5
Elephant	4000	3.6
Whale	170,000	5.2



The pH Scale

$$\mathrm{pH} = -\mathrm{log}[\mathrm{H}^+]$$

Where $\left[H^{+}\right]$ is the concentration of hydrogen ions measures in moles per liter (M).

If
$$[H^+]=10^{-3}M$$
 then pH =

Solutions with a pH of 7 are considered _____

those with pH<7 are ______ and those with pH>7 are ______.

1. The hydrogen ion concentrations in cheeses range from 4.0×10^{-7} M to 1.6×10^{-5} M. Find the corresponding range of pH readings.

2. The most acidic rainfall ever measured occurred in Scotland in 1974; its pH was 2.4. Find the hydrogen ion concentration.

The Richter Scale: In 1935 the American geologist Charles Richter (1900–1984) defined the magnitude M of an earthquake to be

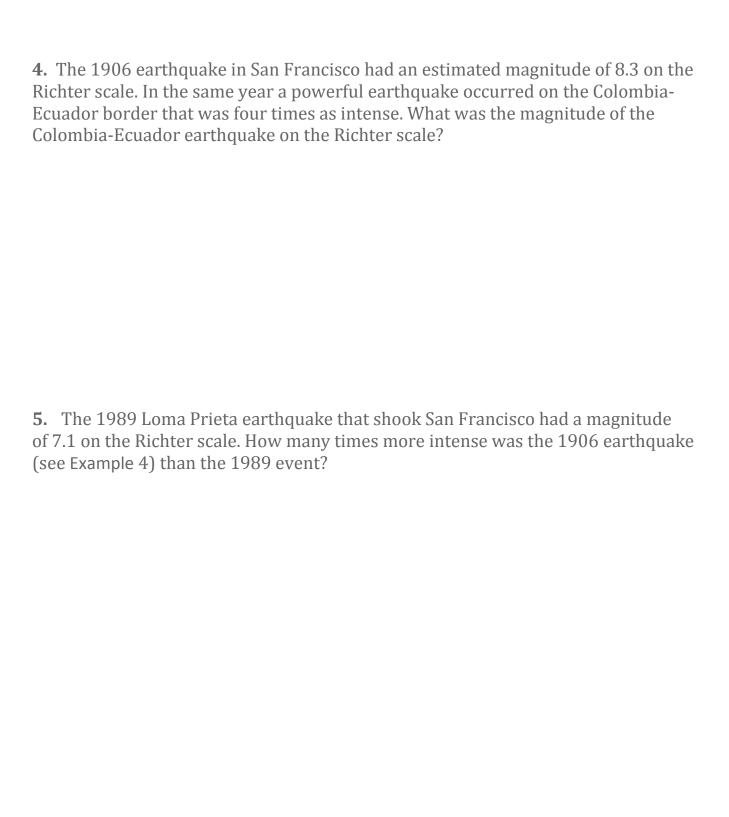
$$M=\lograc{I}{S}$$

Where I is the intensity of the earthquake (measured by the amplitude of a seismograph reading taken 100 km from the epicenter) and S is the intensity of a "standard" earthquake (whose amplitude is 1 micron = 10^{-4} cm)

So the magnitude of a standard earthquake is M =

From 1900-1950 the greatest earthquake had a magnitude of 8.9, and the smallest 0. That is 800,000,000 times more intense, so Richter's scale provides more manageable #s.

- **3. a)** Find the magnitude of an earthquake that has an intensity that is 31.25 (that is, the amplitude of the seismograph reading is 31.25 cm).
 - b) An earthquake was measured to have a magnitude of on the Richter scale. Find the intensity of the earthquake.



The Decibel Scale

$$B=10\lograc{I}{I_0}$$

 $I_0 = 10^{-12} \, {
m W/m^2}$ represents the threshold of hearing, were sound is barely audible. So the decibel of the barely audible reference sound is

6. The intensity of the sound of traffic at a busy intersection was measured at 2×10^{-5} W/m². Find the decibel level.

$$\beta = 10 \cdot \log \frac{2 \times 10^{-5}}{10^{-12}} = 10 \log(2 \cdot 10^{7})$$

$$= 10 (\log 2 + 7) = 73 dB$$

$$(\log 2 \cdot 10^{7}) = \log 2 + \log 10^{7}$$

$$= \log 2 + 7 \log 10^{-7}$$

7. The decibel level of the sound from a certain hair dryer is measured at 70 dB. Find the intensity of the sound.

$$70 = 10 \log \frac{1}{10^{-12}}$$

$$7 = \log \frac{1}{10^{-12}}$$

$$5^{12} \log^{-12} = \frac{1}{10^{-12}} \cdot 10^{-12}$$

$$10^{5} = I$$

$$10^{5} = I$$

$$00001$$

Source of sound
$$B$$
 (dB)Jet takeoff140Jackhammer130Rock concert120Subway100Heavy traffic80Ordinary traffic70Normal conversation50Whisper30Rustling leaves10–20Threshold of hearing0

$$\frac{94}{10} = \log\left(\frac{I}{10^{-12}}\right) - 10^{9.4} = \frac{I}{10^{-12}}$$

$$10^{9.4} \cdot 10^{-12} = I = 10^{-2.6} = 2.5 \times 10^{-3}$$

2.78 x 10 - 5

,0000278

3.469 × 106

3,469,000